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Exercice I. Théorie de l’élasticité et dimensions
Donner les dimensions (en fonction des dimensions fondamentales M, L et T) et les

unités des grandeurs caractéristiques de la théorie de l’élasticité : tenseur des contraintes,
tenseur des déformations, le tenseur des constantes élastiques, coefficients de Lamé, module
d’Young, coefficient de Poisson.

[σi j] = [Ci jkl] = [λ] = [µ] = [E] = ML−1T−2 = [pression]

[ν] = 1

Exercice II. Élasticité statique
Un solide homogène et isotrope de coefficients de Lamé λ et µ est dans un état de

déformation plane. Dans ce cas le vecteur déplacement en tout point du solide s’écrit −→u =
u1(x1,x2)−→e1 + u2(x1,x2)−→e2 où −→e1 et −→e2 sont les deux vecteurs unitaires portés par les directions
Ox1 et Ox2 du repère cartésien Ox1x2x3.

1. Écrire le tenseur des déformations pour un tel déplacement. On explicitera chacune
des composantes εi j en fonction des gradients de déplacements.

2. En déduire que le tenseur des contraintes est de la formeσ11 σ12 0
σ12 σ22 0
0 0 σ33

.
Expliciter σ11,σ12,σ22,σ33 en fonction de λ, µ et∆ la dilatation du solide. On rappelle

que l’équation de Lamé est :

σi j = λεnnδi j + 2µεi j.

3. Soient E et ν le module d’Young et le coefficient de Poisson de ce solide. On rappelle
que ces coefficients sont liés aux coefficients de Lamé par les relations: ν = λ

2(λ+µ) et
E = 2µ(ν + 1).

a. En déduire que σ33 = ν(σ11 + σ22).
b. Expliciter ε11 et ε22 en fonction de σ11, σ22, ν et E.
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c. On donne ν = 0.4, E=200 GPa, σ11 = σ22=200 MPa. Calculer numériquement
ε11 et ε22.

1) Le tenseur des déformations est le suivant :

ε =


∂u1
∂x1

1
2

(
∂u1
∂x2

+ ∂u2
∂x1

)
0

1
2

(
∂u1
∂x2

+ ∂u2
∂x1

)
∂u2
∂x2

0
0 0 0

.
2) On en déduit le tenseur des déformations :

σ11 = λ(ε11 + ε22) + 2µε11 = λ∆ + 2µε11

σ22 = λ∆ + 2µε22

σ33 = λ∆

σ12 = 2µε12

σ21 = 2µε21 = σ12

3a) On somme σ11 et σ22 pour obtenir du ∆ :

σ11 + σ22 = 2∆(λ + µ)

σ33 = ν(σ11 + σ22)

3b)

ε11 =
1 − ν2

E
σ11 −

ν2 + ν
E

σ22

ε22 = −
ν2 + ν

E
σ11 −

1 − ν2

E
σ22

3c) Application numérique :
ν = 0.3

E = 200 GPa

σ11 = 200 MPa

Exercice III. Compression uniforme d’un solide
On considère un solide élastique, homogène et isotrope, plongé dans un fluide au repos.

Les forces volumiques sont négligeables. Dans cette situation, l’état des contraintes en tout
point du solide est identique à celui qui existe dans le fluide dont on notera P le champ de
pression.

1. Donner la forme du tenseur des contraintes au sein du solide.
2. À partir des équations de Lamé, donner la relation existant entre la pression et la

dilatation∆ du solide. En déduire l’expression du module de rigidité à la compression
K = −P/∆.

3. En déduire le tenseur des déformations correspondant, et le champ de déplacement
~u qui en découle.

4. Montrer que le champ de contraintes satisfait aux équations locales de l’équilibre.
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5. Donner l’équation de l’équilibre dans le cas d’un liquide pesant de densité ρ et re-
trouver le théorème fondamental de l’hydrostatique. On prendra l’axe Ox3 vertical
dirigé vers le haut.

1. Le tenseur des contraintes est de la forme :

σ =

−P 0 0
0 −P 0
0 0 −P

.
soit en écriture indicielle σi j = −Pδi j.

2. Équations de Lamé : σi j = λ∆δi j + 2µεi j

∆ =
−3P

3λ + 2µ

K =
3λ + 2µ

3
3. En l’absence de forces de volume on peut écrire :

ε = −
1 − 2ν

E
P

1 0 0
0 1 0
0 0 1

.
Le champ de déplacement ~u est de la forme (en l’absence de forces de volume) :

ui = −
1 − 2ν

E
Pxi

4. Il faut vérifier que div ¯̄σ = 0, ce qui est le cas puisque les 3 éléments diagonaux sont
constants.

5. Les équations de l’équilibre donnent :

−
∂P
∂x1

= 0, −
∂P
∂x2

= 0, −
∂P
∂x3
− ρg = 0

P − P0 = −ρgx3

P + ρgx3 = k

Exercice IV. Torsion d’un cylindre
Soit un cylindre à base circulaire de hauteur L constitué par un matériau élastique isotrope

qui subit une torsion d’angle proportionnelle à la distance de la base inférieure, on appelle le
coefficient de proportionnalité α. Dans le repère orthonormé Oxyz soit Oz l’axe du cylindre.
Le vecteur déplacement en tout point M(x,y,z) est alors −→u (x,y,z) = (−αyz, αxz, 0).

1. Calculer le tenseur des déformations. Y a-t-il une variation de volume durant la
torsion ?

2. Calculer le tenseur des contraintes associé.
3. Déterminer l’expression du vecteur contrainte qui s’applique à la face supérieure du

cylindre.
4. Dessiner schématiquement le champ de vecteurs contraintes sur la face supérieure

du cylindre.

3



5. (Question supplémentaire) Reprendre toutes les questions de l’exercice en vous pla-
çant en coordonnées cylindriques.

1)

ε =
α
2

 0 0 −y
0 0 x
−y x 0


2)

σ = µα

 0 0 −y
0 0 x
−y x 0


3)

~T = σez

~T = µα(−y−→ex + x−→ey)

4) Les flèches présentent une rotation, ce qui permet de visualiser la torsion sur la face
supérieure.

5) (Question supplémentaire) En coordonnées cylindriques, l’expression du déplace-
ment est plus simple :

~u(r,θ,z) = rαz−→uθ

Par contre la déformation nécessite de connaitre le gradient du déplacement en coordon-
nées cylindriques, dont l’expression est moins évidente qu’en coordonnées cartésiennes ※1 :

ε =


∂ur
∂r

1
2

(
∂uθ
∂r −

uθ
r + 1

r
∂ur
∂θ

)
1
2

(
∂ur
∂z + ∂uz

∂r

)
1
2

(
∂uθ
∂r −

uθ
r + 1

r
∂ur
∂θ

)
ur
r + 1

r
∂uθ
∂θ

1
2

(
1
r
∂uz
∂θ + ∂uθ

∂z
1
2

(
∂ur
∂z + ∂uz

∂r

)
1
2

(
1
r
∂uz
∂θ + ∂uθ

∂z

)
∂uz
∂z


Tous les termes sont nuls sauf :

εθz = εzθ =
αr
2

σθz = µαr = Gαr

Car le module de rigidité G et le module de Lamé µ sont égaux.

~T(−→ez ) = Gαr−→ez

1. La démonstration est donnée dans le Royer & Dieulesaint p.314.
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