TD3

Exercice I. Théorie de l’élasticité et dimensions

Donner les dimensions (en fonction des dimensions fondamentales M, L et T) et les
unités des grandeurs caractéristiques de la théorie de 1’élasticité : tenseur des contraintes,
tenseur des déformations, le tenseur des constantes élastiques, coefficients de Lamé, module
d"Young, coefficient de Poisson.

[0j] = [Cijal = [A] = [u] = [E] = ML™'T 2 = [pression]
[v]=1

Exercice II. Elasticité statique

Un solide homogene et isotrope de coefficients de Lamé A et u est dans un état de
déformation plane. Dans ce cas le vecteur déplacement en tout point du solide s’écrit % =
ul(xl,xz)?f + uz(xl,xz)e_z) ol ?1) et ?5 sont les deux vecteurs unitaires portés par les directions
Ox; et Ox, du repére cartésien Oxixpx3.

1. Ecrire le tenseur des déformations pour un tel déplacement. On explicitera chacune

des composantes €;; en fonction des gradients de déplacements.

2. En déduire que le tenseur des contraintes est de la forme

o1 o2 O
o oxn 0]
0 0 033

Expliciter 011,012,022,033 en fonction de A, u et A la dilatation du solide. On rappelle
que 'équation de Lamé est :

Oij = )\em,éij + 2(1.161']'.

3. Soient E et v le module d"Young et le coefficient de Poisson de ce solide. On rappelle
que ces coefficients sont liés aux coefficients de Lamé par les relations: v = 2(++#) et
E=2u(v+1).

a. En déduire que o33 = v(011 + 0).
b. Expliciter €17 et €y en fonction de 011,02,V et E.
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c. On donne v = 0.4, E=200 GPa, 011 = 02,=200 MPa. Calculer numériquement
€11 et ex.

1) Le tenseur des déformations est le suivant :

Juy. 1 (2w ﬂ) 0
8x1 2 axz 8x1
— Ju Ju Ju
e=|1(au , Uz gup .
2 ((9x2 + 8x1) dxp 0
0 0 0

2) On en déduit le tenseur des déformations :
o1 = Alen + €x) +2uen = AA +2uen
02 = AA +2ueyp
033 = AA
012 = 2H€12
021 = 2U€21 = 012
3a) On somme 017 et 0y pour obtenir du A :
o1 + 0 = 2A(A + )

033 = V(011 + 0)

3b)
12 V4
€11 = E o1 E 022
o Vit 5 1-12 5

2 = E 1 E 2

3c) Application numérique :
v=0.3
E =200 GPa
011 = 200 MPa

Exercice III. Compression uniforme d'un solide

On considere un solide élastique, homogene et isotrope, plongé dans un fluide au repos.
Les forces volumiques sont négligeables. Dans cette situation, 1’état des contraintes en tout
point du solide est identique a celui qui existe dans le fluide dont on notera P le champ de
pression.

1. Donner la forme du tenseur des contraintes au sein du solide.

2. A partir des équations de Lamé, donner la relation existant entre la pression et la
dilatation A du solide. En déduire I'expression du module de rigidité a la compression
K = -P/A.

3. En déduire le tenseur des déformations correspondant, et le champ de déplacement
il qui en découle.

4. Montrer que le champ de contraintes satisfait aux équations locales de I'équilibre.
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5. Donner I'équation de I'équilibre dans le cas d'un liquide pesant de densité p et re-
trouver le théoreme fondamental de I'hydrostatique. On prendra 1’axe Ox; vertical
dirigé vers le haut.

| |
1. Le tenseur des contraintes est de la forme :
-P 0 O
=0 =P 0|
o 0 -P
soit en écriture indicielle o;; = —P0;;.
2. Equations de Lamé : 0;j = AA;j + 2ue;;
-3P
A= ——F0—
3A+2u
3A+2u
K= ———
3
3. En l'absence de forces de volume on peut écrire :
100
e:—l_EzVPo 1 0f
0 01
Le champ de déplacement # est de la forme (en 1’absence de forces de volume) :
1-2
u=— E id Pxi

4. 1l faut vérifier que divg = 0, ce qui est le cas puisque les 3 éléments diagonaux sont
constants.

5. Les équations de 1’équilibre donnent :

dP dP dP
Tom U T om Y T PR
P—Py=—-pgxs
P+pgxs =k

Exercice IV. Torsion d'un cylindre

Soit un cylindre a base circulaire de hauteur L constitué par un matériau élastique isotrope
qui subit une torsion d’angle proportionnelle a la distance de la base inférieure, on appelle le
coefficient de proportionnalité a. Dans le repere orthonormé Oxyz soit Oz 1’axe du cylindre.
Le vecteur déplacement en tout point M(x,y,z) est alors _u>(x,y,z) = (—ayz, axz,0).

1.

2.
3.

Calculer le tenseur des déformations. Y a-t-il une variation de volume durant la
torsion ?

Calculer le tenseur des contraintes associé.

Déterminer l'expression du vecteur contrainte qui s’applique a la face supérieure du
cylindre.

Dessiner schématiquement le champ de vecteurs contraintes sur la face supérieure
du cylindre.



5. (Question supplémentaire) Reprendre toutes les questions de 1'exercice en vous pla-
cant en coordonnées cylindriques.

1)
0 0 -y
e=5|0 0 x
-y x 0

2)
0 0 -y
o=uaf 0 0 x
-y x 0

3)

T = e,

T= pa(—yey + xe_y))

4) Les fleches présentent une rotation, ce qui permet de visualiser la torsion sur la face
supérieure.

5) (Question supplémentaire) En coordonnées cylindriques, I'expression du déplace-
ment est plus simple :

il(r,0,2) = raziig

Par contre la déformation nécessite de connaitre le gradient du déplacement en coordon-
nées cylindriques, dont I’expression est moins évidente qu’en coordonnées cartésienne:

uy 1(9ue o . 1 Jw) 1(Ju , du
oar 2 ar r r 00 2 Jz ar
_ |1 (Jus _ ug 1 du, Uy 1 dug 1 (1 u dug
€= 2(81’ r+r 89) r+r 20 2(r 89+82
1 ( Juy + duy 1 (1 Ju, + dug du,
2\ oz or 2 \r 00 0z 0z
Tous les termes sont nuls sauf :
ar
€o; = €0 = 7

0g. = par = Gar

Car le module de rigidité G et le module de Lamé u sont égaux.

f(?z) ) = Gare,

1. La démonstration est donnée dans le Royer & Dieulesaint p.314.



