TD4

Exercice I. Cylindre isotrope en traction

On considere une éprouvette cylindrique, élastiquement isotrope de coefficient de Poisson
v et de module d’Young E. Elle est soumise a une sollicitation de traction pure dans la di-
rection (Ox;), notée o.

1. En utilisant les définitions du coefficient de Poisson v et du module d"Young E, en
déduire la matrice des déformations en fonction de v et E.
2. Vérifier que la relation ¢;; = % 0ij — ¥ 0i0;j donne le méme résultat.
3. En déduire la dilatation A.
4. On considere que la dilatation est positive. En déduire la valeur maximale prise par
le coefficient de Poisson v.
5. A quelle situation physique correspond v =1/27?
6. a) En utilisant I'équation de Lamé, montrer que Tr(5) = (34 + 2u)A.
b) En déduire E et v en fonction des coefficients de Lamé A et p.
7. Ecrire E et v en fonction de Cq; et Cys.
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1. En utilisant les définitions du coefficient de Poisson v et du module d"Young E
E=on/en,
v =—én/en,
on en déduit la matrice des déformations en fonction de v et E :
s(t 0 0
€=+ 0 -v 0}
0 0 -v
Remarque : le tenseur des contraintes s’écrit de la maniere suivante :
o 00
o=(0 0 0Of
0 00
Bien que le tenseur des contraintes ne posséde qu’une composante, le tenseur des
déformations en possede 3.
2. On peut vérifier que la relation ¢;; = % 0ij — ¥ 0d;j donne le méme résultat.
3. En déduire la dilatation :

A:%(l—Zv)



A>0

v<1/2

5. v =1/2correspond a un liquide. En effet, on sait que pourv = 1/2ona G = 31;:11;3)1’ )

donc Cy = 0 cela signifie que les ondes transverses ne peuvent pas se propager : s’il
n’y a pas de force de rappel en cisaillement, on est en présence d'un liquide.

6. a) L'équation de Lamé est 0;; = AA;; + 2ue;;. Pour calculer la trace du tenseur des
contraintes, on calcule o;;.

0ji =011 + 0 + 033 = 3AA + 2}1(611 + €y + 633) = (3/\ + 2y)A

b) Calcul de v en fonction des coefficients de Lamé A et u :

0pn = AA+ Z‘UGZZ

0 _,on
O—AE(l 2v)+2y(vE)

o:%m-zm—zw)

(A=2vA =2uv) =0

LA
S 2(A+ )

Calcul de E en fonction des coefficients de Lamé A et u :
on =/\%(1—2v)+2y%

E=A-2vA+2u

A
E—A—ZA(W)+2y

E- uBA +2u)
B A+u

7. Ecrire E et v en fonction de Cy; et Cyp :

0 =0 =Cp(en +€) + Criexn

C12

V= —
Ci +Ci2

2

E=Cy -2Cpv=C —2£
11 12 11 C11+C12




Exercice II. Equations d’Etat et module d’incompressibilité

En sciences des hautes pressions ou en géophysique, la connaissance du module d’incom-
pressibilité B est importante. En effet, B est le principal parametre gouvernant la variation
de volume avec la pression. La relation V(P) (ou P(V)) est appelée équation d’état. Rappelons
la définition thermodynamique du module d’incompressibilité :

—

apP
o-of2)

Que signifie l'indice T dans la définition de B?

Pour des petites déformations, on peut considérer que B est indépendant de P. En
déduire une équation d’état V(P). Donner une raison pour laquelle cette équation
d’état n’est jamais utilisée en géophysique.

Supposons maintenant que B varie linéairement avec P tel que B = B + kP, ou le

coefficient k peut aussi étre noté B) = (g—ﬁ) . Donner la nouvelle équation d’état
P=0

(appelée équation de Murnaghan).

|
L'indice T dans la formule (1) signifie que P(V,T) est dérivé par rapporta V, a T
constante (voir la définition des dérivées partielles). Br est donc le module d’incom-
pressibilité isotherme.
Si B est constant alors
V(P) = Vye P/Po,

Cette équation est une approximation (valable sur une gamme restreinte de pression
- quelques MPa), car B varie avec la pression ; de plus sous cette forme, V devient nul
lorsque P tend vers l'infini (une quantité de matiere non nulle ne peut pas occuper
un volume nul).

Si B =B +kP avec k = (3_113)1:-0 = B}, alors on obtient 1'équation de Murnagha :

’ -1/By
V=Vl1+=-2p .
0( ¥ By )

Ici aussi, cette équation est valable dans une gamme de pressions faibles (entre P,
et P~ BT)
|

Exercice III. Compressibilité d’un cristal

(Inspiré du livre de D.Royer, exercice 3.2, p. 148)

Calculer le coefficient de compressibilité y = + = — 4 d’un cristal soumis a une pression
hydrostatique P, out A est la dilatation. Pour cela, utiliser le tenseur des flexibilités 5 défini
comme €;; = S;0 Ol € est le tenseur des déformations et ¢ le tenseur des contraintes.

Réponse ¢ X =511 + S +S33 + 2(512 + Sp3 + S31).

on = —Pdy

€ij = Sijon

1.

La publication de référence est : Francis D. MurNAGHAN, The compressibility of media under extreme pres-
sures, Proceedings of the national academy of sciences of the United States of America, 30(9), 244 (1944).



A = € = =Psii
X = —A/P = Sji = 511 + 52 + 533 + 2(S12 + 523 + 531)
La compressibilité, a une pression P élevée, est entierement déterminée par la connaissance
des constantes élastiques (ou des flexibilités). Il est ensuite facile de retrouver 1'équation

d’état V(P).
| |

Exercice IV. Compression statique

Une masse de 10 kg est posée sur la totalité de la face supérieure d"un cube d’acier de coté
a=10 cm, lui-méme posé sur le sol. L'axe de symétrie du cube est I’axe vertical (Ox3), orienté
vers le haut. La base du cube est a la cote x3 = 0. On négligera la pression atmosphérique,
et l'effet du champ de pesanteur sur le cube. Pour les applications numériques, prendre
¢=10 ms™.

1. Faire un schéma de la situation physique étudiée.

2. a. Ecrire le tenseur o des contraintes qui régnent a l'intérieur du cube d’acier, en

fonction de m, g et a.

b. Application numérique : exprimer o en MPa, et dessiner le «cube des con-
traintes » correspondant.

c. Enoncer I'équation locale de 1’équilibre translationnel. Montrer que ¢ vérifie
cette équation.

d. Donner le vecteur contrainte ¢ qui s’exerce sur chacune des faces du cube ot
celui-ci est non nul. Rappel : G est fonction du point M et de la direction .

3. Une loi de comportement relie les tenseurs des contraintes et des déformations. Donner
la relation (linéaire, purement élastique) pour un solide anisotrope quelconque. De
maniere générale, quel est I'ordre (ou le rang) du tenseur des constantes élastiques ?
Quel est le nombre de composantes de ce tenseur ?

4. Dans la situation physique étudiée, les propriétés élastiques du cube d’acier peuvent
étre entierement décrites par deux parametres, appelés module d"Young E et coeffi-
cient de Poisson v. Pour l'acier, on prendra E = 200 GPa et v=0.2.

a. Donner la définition de ces deux coefficients en fonction de o et €, et en dé-
duire le tenseur des déformations linéarisées €, en fonction de v, E, m, g et a.
Application numérique : calculer €.

b. Exprimer la variation relative de volume du cube d’acier A en fonction de v,
E, m, g et a. Application numérique : calculer A.

c. En déduire le champ de déplacements i(x1,%x2,x3). On prendra comme condi-
tions aux limites : déplacement nul a la base du cube, et déplacement nul sur
I'axe vertical (Ox;). Représenter ce champ dans les plans vertical (Ox;x3) et
horizontal (Ox;x;) (a la cote x3 = a/2).

5. On donne l'équation de Lamé inverse :
-A 1
ou A et u sont les coefficients de Lamé, et 6 le tenseur de Kronecker.

a. Donner une signification physique simple du coefficient p.

b. Exprimer le tenseur des déformations € en fonction de A et p.

c. En déduire E en fonction de A et y, et v en fonction de A et p.

€1']'




Figure 1 — Schéma de la situation physique étudiée.

a. Tenseur o des contraintes qui régnent a l'intérieur du cube d’acier :

00 0
c={0 0 O
00 -2

a2
Le signe moins provient de la convention pour une compression.
b. Application numérique :

o =10*Pa = 107>MPa

Cette contrainte est vraiment tres faible! L'ordre de grandeur est habituelle-
ment de 10-100 MPa.

Le tenseur des contraintes n’ayant qu'une seule composante non nulle et
négative, le cube des contraintes ne devrait figurer que la fleche rouge :

0.33

=/
<

Figure 2 — Cube des contraintes en compression statique suivant 1’axe (Ox3).

c. L’équation locale de I'équilibre translationnel est:

aO'Z']‘
8x j
Seule la composante 033 est non nulle donc
do
B _.
9x3

L’équilibre est vérifié.
d. Le théoreme de Cauchy relie le vecteur contrainte & avec la direction d’obser-
vation 71 :
S
i

Qu

-
o=



oul 1 est le vecteur normal a la face considérée. Donc les vecteurs contraintes
0 sont non-nuls sur 2 faces seulement (la face supérieure et la face inférieure) :

m
c?(facesup,?g)) = - a—f?;,

m
3(faceinf, —e3) = a—f?;.

Remarquons que (principe des actions réciproques) :
3(facesup,e3) = —G(faceinf, —e3)
La loi de comportement pour un solide anisotrope quelconque est
0ij = Ciju€n,

ot Cjj est un tenseur de rang 4, avec 81 composantes, qui se réduisent a 21 compo-
santes pour des raisons de symétrie et énergétiques.
Dans la situation physique étudiée, les propriétés élastiques du cube d’acier peuvent
étre entierement décrites par deux parameétres, appelés module d"Young E et coeffi-
cient de Poisson v. Pour l'acier, on prendra E = 200 GPa et v=0.2.

a. La définition du module d"Young E en fonction de ¢ et € est :

033 = Eezs,

ou les indices 33 signifient que la compression a lieu suivant 1’axe (Ox3).
La définition du coefficient de Poisson v en fonction de o et € est :

€11 = —Ve€sz,
€2 = —V€ss.

Le tenseur des déformations linéarisées € s’écrit donc

Vmg
2E ng 0 vmg v 0 O
e=| 0 — 0 ZZEOVO (3)
0o 0 -2 "Floo -1
Application numérique :
€11 = 10_8
€y = 10_8
€33 = —5.10_8
soit sous forme matricielle
10 0 0

e=| 0 1078 0 .
0 0 -5107%

b. La variation relative de volume du cube d’acier A est
V-V,

A=
Vo

= TV(E) =€; = €11 + €+ €33.

Application numérique :
A=-310".



Le lien entre déformation et déplacement est donné par :

oo Lo o
(a 2 (9xj axi

C.

Les seuls termes non nuls sont les termes diagonaux donc :
8ui
€ii = =
“ 8xi

ou la notation ¢;; signifie qu’on ne somme pas sur l'indice i.

u; = feiidxi

_ yms

U = E X1 +k1,
vmg

Uy = aZE X2 +k2,

et ki =k, =0 car u;(x; =0) =0 et up(x, =0) = 0.
vmg

Uz = 2F X3 +k3

et k3 = 0 car uz(x3 = 0) = 0 (le déplacement est nul a la base du cube en x3 = 0).
Le champ de déplacement en tout point du cube est donc :

mg - - -
N
l/l(f) = 2_E (VX1€1 + vXxyey — X3€3).

X3

Xy

Figure 3 — Champ de déplacement i/ dans le plan vertical. Le champ représenté est de la

— -
forme 7 = k1X1€1 - k2X3€3, ou k1 < kz.

5. On donne l'équation de Lamé inverse :
-A 1
i = 5 ar a 0ij0m + 5 i, 4
U= 200G+ 2u) Ty O @)

ou A et u sont les coefficients de Lamé, et 6 le tenseur de Kronecker.
a. Le coefficient de Lamé u est égal au module de cisaillement G (dimension
d’une pression et unité le pascal).

b. A partir de 'équation @ on déduit
€11 =€ = A e
TR T uBA+2u) @




X3

w\ 4 4
Xy
] e = () -
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|
Figure 4 — Champ de déplacement i/ dans le plan horizontal, situé a la cote x; = a/2. Le
champ représenté est de la forme o = kxl?f +kxoe,.

3 A+u  mg
pBA +2u) a?

A0 0
mg
= 0 A 0 5
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c. Par identification entre les tenseurs 3 et Bl on trouve

o _ BBA+2y)
Aty

A
Au

€33

7

V=




