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Exercice I. Cylindre isotrope en traction
On considère une éprouvette cylindrique, élastiquement isotrope de coefficient de Poisson

ν et de module d’Young E. Elle est soumise à une sollicitation de traction pure dans la di-
rection (Ox1), notée σ.

1. En utilisant les définitions du coefficient de Poisson ν et du module d’Young E, en
déduire la matrice des déformations en fonction de ν et E.

2. Vérifier que la relation εi j = ν+1
E σi j −

ν
E σkkδi j donne le même résultat.

3. En déduire la dilatation ∆.
4. On considère que la dilatation est positive. En déduire la valeur maximale prise par

le coefficient de Poisson ν.
5. À quelle situation physique correspond ν = 1/2 ?
6. a) En utilisant l’équation de Lamé, montrer que Tr( ¯̄σ) = (3λ + 2µ)∆.

b) En déduire E et ν en fonction des coefficients de Lamé λ et µ.
7. Écrire E et ν en fonction de C11 et C12.

1. En utilisant les définitions du coefficient de Poisson ν et du module d’Young E

E = σ11/ε11,

ν = −ε22/ε11,

on en déduit la matrice des déformations en fonction de ν et E :

ε =
σ
E

1 0 0
0 −ν 0
0 0 −ν

.
Remarque : le tenseur des contraintes s’écrit de la manière suivante :

σ =

σ 0 0
0 0 0
0 0 0

.
Bien que le tenseur des contraintes ne possède qu’une composante, le tenseur des
déformations en possède 3.

2. On peut vérifier que la relation εi j = ν+1
E σi j −

ν
E σkkδi j donne le même résultat.

3. En déduire la dilatation :
∆ =

σ
E

(1 − 2ν)
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4.
∆ > 0

ν < 1/2

5. ν = 1/2 correspond à un liquide. En effet, on sait que pour ν = 1/2 on a G = 3K(1−2ν)
2(1+ν) = 0

donc C44 = 0 cela signifie que les ondes transverses ne peuvent pas se propager : s’il
n’y a pas de force de rappel en cisaillement, on est en présence d’un liquide.

6. a) L’équation de Lamé est σi j = λ∆δi j + 2µεi j. Pour calculer la trace du tenseur des
contraintes, on calcule σii.

σii = σ11 + σ22 + σ33 = 3λ∆ + 2µ(ε11 + ε22 + ε33) = (3λ + 2µ)∆.

b) Calcul de ν en fonction des coefficients de Lamé λ et µ :

σ22 = λ∆ + 2µε22

0 = λ
σ11

E
(1 − 2ν) + 2µ(−ν

σ11

E
)

0 =
σ11

E
(λ − 2νλ − 2µν)

(λ − 2νλ − 2µν) = 0

ν =
λ

2(λ + µ)

Calcul de E en fonction des coefficients de Lamé λ et µ :

σ11 = λ
σ11

E
(1 − 2ν) + 2µ

σ11

E

E = λ − 2νλ + 2µ

E = λ − 2λ
(

λ
2(λ + µ)

)
+ 2µ

E =
µ(3λ + 2µ)
λ + µ

7. Écrire E et ν en fonction de C11 et C12 :

σ22 = 0 = C12(ε11 + ε33) + C11ε22

ν =
C12

C11 + C12

E = C11 − 2C12ν = C11 − 2
C2

12

C11 + C12
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Exercice II. Équations d’État et module d’incompressibilité
En sciences des hautes pressions ou en géophysique, la connaissance du module d’incom-

pressibilité B est importante. En effet, B est le principal paramètre gouvernant la variation
de volume avec la pression. La relation V(P) (ou P(V)) est appelée équation d’état. Rappelons
la définition thermodynamique du module d’incompressibilité :

BT = −V
(
∂P
∂V

)
T
. (1)

1. Que signifie l’indice T dans la définition de B ?
2. Pour des petites déformations, on peut considérer que B est indépendant de P. En

déduire une équation d’état V(P). Donner une raison pour laquelle cette équation
d’état n’est jamais utilisée en géophysique.

3. Supposons maintenant que B varie linéairement avec P tel que B = B0 + kP, où le
coefficient k peut aussi être noté B′0 =

(
∂B
∂P

)
P=0

. Donner la nouvelle équation d’état
(appelée équation de Murnaghan).

1. L’indice T dans la formule (1) signifie que P(V,T) est dérivé par rapport à V, à T
constante (voir la définition des dérivées partielles). BT est donc le module d’incom-
pressibilité isotherme.

2. Si B est constant alors
V(P) = V0e−P/P0 .

Cette équation est une approximation (valable sur une gamme restreinte de pression
- quelques MPa), car B varie avec la pression ; de plus sous cette forme, V devient nul
lorsque P tend vers l’infini (une quantité de matière non nulle ne peut pas occuper
un volume nul).

3. Si B = B0 + kP avec k =
(
∂B
∂P

)
P=0

= B′0 alors on obtient l’équation de Murnaghan ※1 :

V = V0

(
1 +

B′0
B0

P
)−1/B0

.

Ici aussi, cette équation est valable dans une gamme de pressions faibles (entre Pamb

et P ' BT).

Exercice III. Compressibilité d’un cristal
(Inspiré du livre de D.Royer, exercice 3.2, p. 148)
Calculer le coefficient de compressibilité χ = 1

B = − ∆
P d’un cristal soumis à une pression

hydrostatique P, où ∆ est la dilatation. Pour cela, utiliser le tenseur des flexibilités ¯̄s défini
comme εi j = si jklσkl où ε est le tenseur des déformations et σ le tenseur des contraintes.

Réponse : χ = s11 + s22 + s33 + 2(s12 + s23 + s31).

σkl = −Pδkl

εi j = Si jklσkl

1. La publication de référence est : Francis D. Murnaghan, The compressibility of media under extreme pres-
sures, Proceedings of the national academy of sciences of the United States of America, 30(9), 244 (1944).
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∆ = εii = −Psiikk

χ = −∆/P = siikk = s11 + s22 + s33 + 2(s12 + s23 + s31)

La compressibilité, à une pression P élevée, est entièrement déterminée par la connaissance
des constantes élastiques (ou des flexibilités). Il est ensuite facile de retrouver l’équation
d’état V(P).

Exercice IV. Compression statique
Une masse de 10 kg est posée sur la totalité de la face supérieure d’un cube d’acier de côté

a=10 cm, lui-même posé sur le sol. L’axe de symétrie du cube est l’axe vertical (Ox3), orienté
vers le haut. La base du cube est à la cote x3 = 0. On négligera la pression atmosphérique,
et l’effet du champ de pesanteur sur le cube. Pour les applications numériques, prendre
g = 10 m·s−2.

1. Faire un schéma de la situation physique étudiée.
2. a. Écrire le tenseur σ des contraintes qui règnent à l’intérieur du cube d’acier, en

fonction de m, g et a.
b. Application numérique : exprimer σ en MPa, et dessiner le « cube des con-

traintes » correspondant.
c. Énoncer l’équation locale de l’équilibre translationnel. Montrer que σ vérifie

cette équation.
d. Donner le vecteur contrainte ~σ qui s’exerce sur chacune des faces du cube où

celui-ci est non nul. Rappel : ~σ est fonction du point M et de la direction ~n.
3. Une loi de comportement relie les tenseurs des contraintes et des déformations. Donner

la relation (linéaire, purement élastique) pour un solide anisotrope quelconque. De
manière générale, quel est l’ordre (ou le rang) du tenseur des constantes élastiques ?
Quel est le nombre de composantes de ce tenseur ?

4. Dans la situation physique étudiée, les propriétés élastiques du cube d’acier peuvent
être entièrement décrites par deux paramètres, appelés module d’Young E et coeffi-
cient de Poisson ν. Pour l’acier, on prendra E = 200 GPa et ν=0.2.

a. Donner la définition de ces deux coefficients en fonction de σ et ε, et en dé-
duire le tenseur des déformations linéarisées ε, en fonction de ν, E, m, g et a.
Application numérique : calculer ε.

b. Exprimer la variation relative de volume du cube d’acier ∆ en fonction de ν,
E, m, g et a. Application numérique : calculer ∆.

c. En déduire le champ de déplacements ~u(x1,x2,x3). On prendra comme condi-
tions aux limites : déplacement nul à la base du cube, et déplacement nul sur
l’axe vertical (Ox3). Représenter ce champ dans les plans vertical (Ox1x3) et
horizontal (Ox1x2) (à la cote x3 = a/2).

5. On donne l’équation de Lamé inverse :

εi j =
−λ

2µ
(
3λ + 2µ

) δi jσnn +
1

2µ
σi j, (2)

où λ et µ sont les coefficients de Lamé, et δ le tenseur de Kronecker.
a. Donner une signification physique simple du coefficient µ.
b. Exprimer le tenseur des déformations ε en fonction de λ et µ.
c. En déduire E en fonction de λ et µ, et ν en fonction de λ et µ.

1.
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Figure 1 – Schéma de la situation physique étudiée.

2. a. Tenseur σ des contraintes qui règnent à l’intérieur du cube d’acier :

σ =

0 0 0
0 0 0
0 0 −

mg
a2

.
Le signe moins provient de la convention pour une compression.

b. Application numérique :

σ = 104Pa = 10−2MPa

Cette contrainte est vraiment très faible ! L’ordre de grandeur est habituelle-
ment de 10-100 MPa.

Le tenseur des contraintes n’ayant qu’une seule composante non nulle et
négative, le cube des contraintes ne devrait figurer que la flèche rouge :

Figure 2 – Cube des contraintes en compression statique suivant l’axe (Ox3).

c. L’équation locale de l’équilibre translationnel est:

∂σi j

∂x j
= 0.

Seule la composante σ33 est non nulle donc

∂σ33

∂x3
= 0.

L’équilibre est vérifié.
d. Le théorème de Cauchy relie le vecteur contrainte ~σ avec la direction d’obser-

vation ~n :
~σ = ¯̄σ~n
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où ~n est le vecteur normal à la face considérée. Donc les vecteurs contraintes
~σ sont non-nuls sur 2 faces seulement (la face supérieure et la face inférieure) :

~σ( f acesup,−→e3 ) = −
mg
a2
−→e3 ,

~σ( f acein f , − −→e3 ) =
mg
a2
−→e3 .

Remarquons que (principe des actions réciproques) :

~σ( f acesup,−→e3 ) = −~σ( f acein f , − −→e3 )

3. La loi de comportement pour un solide anisotrope quelconque est

σi j = Ci jklεkl,

où Ci jkl est un tenseur de rang 4, avec 81 composantes, qui se réduisent à 21 compo-
santes pour des raisons de symétrie et énergétiques.

4. Dans la situation physique étudiée, les propriétés élastiques du cube d’acier peuvent
être entièrement décrites par deux paramètres, appelés module d’Young E et coeffi-
cient de Poisson ν. Pour l’acier, on prendra E = 200 GPa et ν=0.2.

a. La définition du module d’Young E en fonction de σ et ε est :

σ33 = Eε33,

où les indices 33 signifient que la compression a lieu suivant l’axe (Ox3).
La définition du coefficient de Poisson ν en fonction de σ et ε est :

ε11 = −νε33,

ε22 = −νε33.

Le tenseur des déformations linéarisées ε s’écrit donc

ε =


νmg
a2E 0 0
0 νmg

a2E 0
0 0 −

mg
a2E

 =
νmg
a2E

ν 0 0
0 ν 0
0 0 −1

 (3)

Application numérique :
ε11 = 10−8

ε22 = 10−8

ε33 = −5.10−8

soit sous forme matricielle

ε =

10−8 0 0
0 10−8 0
0 0 −5.10−8

.
b. La variation relative de volume du cube d’acier ∆ est

∆ =
V − V0

V0
= Tr( ¯̄ε) = εii = ε11 + ε22 + ε33.

Application numérique :
∆ = −3.10−8.
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c. Le lien entre déformation et déplacement est donné par :

εi j =
1
2

(
∂ui

∂x j
+
∂u j

∂xi

)
Les seuls termes non nuls sont les termes diagonaux donc :

εii =
∂ui

∂xi

où la notation εii signifie qu’on ne somme pas sur l’indice i.

ui =

∫
εiidxi

u1 =
νmg
a2E

x1 + k1,

u2 =
νmg
a2E

x2 + k2,

et k1 = k2 = 0 car u1(x1 = 0) = 0 et u2(x2 = 0) = 0.

u3 =
νmg
a2E

x3 + k3

et k3 = 0 car u3(x3 = 0) = 0 (le déplacement est nul à la base du cube en x3 = 0).
Le champ de déplacement en tout point du cube est donc :

~u(~r) =
mg
a2E

(
νx1
−→e1 + νx2

−→e2 − x3
−→e3

)
.

Figure 3 – Champ de déplacement ~u dans le plan vertical. Le champ représenté est de la
forme ~u = k1x1

−→e1 − k2x3
−→e3 , où k1 < k2.

5. On donne l’équation de Lamé inverse :

εi j =
−λ

2µ
(
3λ + 2µ

) δi jσnn +
1

2µ
σi j, (4)

où λ et µ sont les coefficients de Lamé, et δ le tenseur de Kronecker.
a. Le coefficient de Lamé µ est égal au module de cisaillement G (dimension

d’une pression et unité le pascal).
b. À partir de l’équation 4 on déduit

ε11 = ε22 =
λ

2µ
(
3λ + 2µ

) mg
a2
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Figure 4 – Champ de déplacement ~u dans le plan horizontal, situé à la cote x3 = a/2. Le
champ représenté est de la forme ~u = kx1

−→e1 + kx2
−→e2 .

ε33 = −
λ + µ

µ
(
3λ + 2µ

) mg
a2

ε =
mg

µ
(
3λ + 2µ

)
a2

λ 0 0
0 λ 0
0 0 −(λ + µ)

 (5)

c. Par identification entre les tenseurs 3 et 5 on trouve

E =
µ
(
3λ + 2µ

)
λ + µ

,

ν =
λ

λ + µ
.
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