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Exercice I. Propagation du son dans un solide anisotrope

A) Cas du quartz

On s’intéresse à la propagation du son dans le quartz, qui est un cristal transparent
anisotrope composé de dioxyde de silicium de formule SiO2 (classe cristalline : trigonal,
classe de symétrie : 32).

1. Quel est le nombre de constantes élastiques indépendantes ? Écrire le tenseur C cor-
respondant.

2. Donner l’équation de propagation pour un milieu continu dans le cas d’un déplace-
ment quelconque noté ~u(~x,t).

3. On cherche maintenant les solutions de cette équation sous la forme d’ondes planes
progressives qui se propagent dans la direction ~n telles que

ui = u′iF
(
t −

~n · ~x
V

)
,

où F est une fonction quelconque. Dans cette expression, que signifient u′i et V ?
4. Écrire l’équation de propagation pour des ondes planes progressives (cette équation

est appelée équation de Christoffel).
5. On introduit un tenseur Γ appelé tenseur de Christoffel et défini par Γil = Ci jkln jnk.

Expliciter les 6 composantes indépendantes non-nulles du tenseur Γ pour une onde
plane se propageant dans une direction quelconque.

6. On souhaite calculer les vitesses de propagation le long de l’axe (Ox1). Réécrire le
tenseur de Christoffel Γ dans ce cas. En utilisant l’équation de Christoffel, déduire
l’expression des vitesses et les polarisations associées.

7. Application numérique : calculer la valeur des vitesses. On prendra ρ = 2648 kg/m3,
C11 = 86.7 GPa, C44 = 57.9 GPa, C66 = 39.8 GPa, C14 = −17.9 GPa.

Exercice I

A) Cas du quartz

1. Le quartz est de classe cristalline trigonale et de classe de symétrie 32. La forme du
tenseur des constantes élastiques est tabulée ※1.

1. Voir D. Royer, E. Dieulesaint, Ondes Élastiques dans les Solides - Tome 1: Propagation Libre et Guidée,
Masson, Paris, p.128 Fig.3.9
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On compte le nombre de composantes indépendantes non nulles et on trouve
6 constantes élastiques indépendantes (ce nombre est indiqué en bas à droite de
la table) : C11, C33, C12, C44, C13, C14. La composante C66 n’est pas indépendante :
C66 = 1

2 (C11 − C12).
2. L’équation de propagation pour un milieu continu est :

ρ
∂2ui

∂t2 = Ci jkl
∂2ul

∂x jxk
.

3. Dans l’équation

ui = u′iF
(
t −

~n · ~x
V

)
,

u′i est la polarisation de l’onde, V est la vitesse de propagation, ~n est la direction de
propagation, et ~x est le vecteur position (noté ~r = ~x =

−−→
OM).

4. L’équation de propagation pour des ondes planes progressives est :

ρV2u′i = Ci jkln jnku′l,

qu’on appelle équation de Christoffel. On introduit un nouveau tenseur Γil = Ci jkln jnk

et on obtient
ρV2u′i = Γilu′l.

5. On introduit dans cette question le tenseur de Christoffel Γ. Le tenseur Γ dans le cas
général est donné dans le livre de D. Royer équation (4.11) p.160. Il suffit de reprendre
ces formules pour le cas du quartz (ou de les recalculer), et on trouve ※2 :

Γ11 = C11n2
1 + C66n2

2 + C44n2
3 + 2C14n2n3,

Γ22 = C66n2
1 + C11n2

2 + C44n2
3 − 2C14n2n3,

Γ33 = C66n2
1 + C11n2

2 + C44n2
3 − 2C14n2n3,

Γ12 = (C12 + C66)n1n2 + 2C14n1n3,

Γ13 = (C13 + C44)n1n2 + 2C14n1n2,

Γ23 = (C13 + C44)n2n3 + C14

(
n2

1 − n2
2

)
.

Complément : voici le détail des étapes du calcul pour la composante Γ12 (les
différents termes ont été rangés dans un tableau pour faciliter la lecture) :

étape 1 Γ12 = C1112n1n1 + C1122n1n2 + C1132n1n3

+ C1212n2n1 + C1222n2n2 + C1232n2n3

+ C1312n3n1 + C1322n3n2 + C1332n3n3

étape 2 Γ12 = C16n2
1 + C12n1n2 + C14n1n3

+ C66n1n2 + C62n2
2 + C64n2n3

+ C56n1n3 + C52n2n3 + C54n2
3

étape 3 Γ12 = 0 + C12n1n2 + C14n1n3

+ C66n1n2 + 0 + 0
+ C14n1n3 + 0 + 0

2. Voir D. Royer, op. cit, équation (4.50) page 185.
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6. Les 3 vitesses de propagation le long de l’axe Ox1 sont calculées à partir de l’équation
de Christoffel.

Direction (Ox1) signifie n = (1,0,0) donc

Γ =

C11 0 0
0 C66 C14

0 C14 C44

.
On écrit l’équation séculaire det( ¯̄Γ − ρV2I3) = 0, qui donne :∣∣∣∣∣∣∣∣

C11 − ρV2 0 0
0 C66 − ρV2 C14

0 C14 C44 − ρV2

∣∣∣∣∣∣∣∣ = 0,

soit (
C11 − ρV2

)[(
C66 − ρV2

)(
C44 − ρV2

)
− C2

14

]
= 0.

Les racines de cette équation nous permettent de déduire les 3 vitesses V1, V2 et
V3 telles que :

ρV2
1 = C11,

2ρV2
2,3 = (C44 + C66) ±

√
(C66 − C44)2 + 4C2

14 .

Les polarisations sont les vecteurs propres associés à chaque valeur propre ρV2
i .

Ici, V1 correspond à la vitesse d’une onde longitudinale car la polarisation est suivant
l’axe de propagation.

7. Application numérique avec les valeurs données dans l’énoncé :

V1 = VL = 5722 m/s,

V2 = VT1 = 5101 m/s,

V3 = VT2 = 3297 m/s.

B) Cas du silicium

On s’intéresse aux propriétés élastiques du silicium, qui est un cristal anisotrope (système
cristallin : cubique, groupe ponctuel : m3̄m). Nous allons voir que les constantes élastiques
du silicium peuvent être déterminées à partir de la mesure de vitesses du son.

1. Combien de constantes élastiques non nulles et indépendantes possède le silicium ?
Écrire le tenseur des constantes élastiques C associé en vous aidant de la figure jointe.

2. Écrire l’équation de propagation pour les ondes planes progressives (cette équation
est appelée équation de Christoffel).

3. On introduit un tenseur Γ appelé tenseur de Christoffel et défini par Γil = Ci jkln jnk.
a. Expliciter les 6 composantes indépendantes non-nulles du tenseur Γ pour une

onde plane se propageant suivant une direction quelconque (Aide : Γ33 =

C44

(
n2

1 + n2
2

)
+ C11n2

3 et Γ13 = (C12 + C44)n1n3).
b. La propagation a lieu dans la direction [100)]. Résoudre l’équation séculaire

et en déduire les vitesses de propagation (Aide : l’équation séculaire est de la
forme

∣∣∣Γil − ρV2δil

∣∣∣ = 0). Quelles sont les vitesses longitudinales ou transverses ?
c. Faire de même pour la direction [110], en précisant dans ce cas l’expression

de ~n. Quelles sont les vitesses longitudinales ou transverses ?
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d. Dans ce dernier cas (propagation dans la direction [100]), calculer les constantes
élastiques en fonction des vitesses calculées dans la question précédente et de
la masse volumique ρ.

Exercice I

B) Cas du silicium

1. Le silicium possède seulement 3 constantes élastiques non nulles et indépendantes,

C11 = C22 = C33,

C12 = C21 = C13 = C31 = C32 = C23,

C44 = C55 = C66.

Le tenseur des constantes élastiques C associé est le suivant :

C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44


. (1)

2. L’équation de propagation pour des ondes planes progressives est :

ρV2u′i = Ci jkln jnku′l,

qu’on appelle équation de Christoffel. On introduit un nouveau tenseur Γil = Ci jkln jnk

et on a
ρV2u′i = Γilu′l.

3. a. Les 6 composantes indépendantes non-nulles du tenseur Γ, pour une onde
plane se propageant suivant une direction quelconque, sont les suivantes :

Γ11 = C44

(
n2

2 + n2
3

)
+ C11n2

1,

Γ22 = C44

(
n2

1 + n2
3

)
+ C11n2

2,

Γ33 = C44

(
n2

1 + n2
2

)
+ C11n2

3,

Γ12 = Γ21 = (C12 + C44)n1n2,

Γ13 = Γ31 = (C12 + C44)n1n3,

Γ23 = Γ32 = (C12 + C44)n2n3.

b. La propagation a lieu dans la direction [100].

Γ =

C11 0 0
0 C44 0
0 0 C44

.
On résoud l’équation séculaire :

det

C11 − ρV2 0 0
0 C44 − ρV2 0
0 0 C44 − ρV2

 = 0
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Et les vitesses de propagation se déduisent :

V1 =

√
C11

ρ
,

V2 = V3 =

√
C44

ρ
.

Quelles sont les vitesses longitudinales ou transverses : V1 est la vitesse
longitudinale, V2 et V3 sont des vitesses transverses.

c. Calcul des vitesses longitudinales ou transverses pour la direction [110].
Précisons d’abord l’expression de ~n :

~n =
1
√

2
−→ux +

1
√

2
−→uy.

Γ =


1
2 (C11 + C44) 1

2 (C12 + C44) 0
1
2 (C12 + C44) 1

2 (C11 + C44) 0
0 0 C44


VL =

√
C11 + 2C44 + C12

2ρ
,

VT1 =

√
C11 − C12

2ρ
,

VT2 =

√
C44

ρ
.

d. Exprimons les constantes élastiques en fonction des vitesses calculées dans la
question précédente et de la masse volumique ρ :

C11 = ρ(V2
L − V2

T1
+ V2

T2
),

C12 = ρ(V2
L − V2

T1
− V2

T2
),

C44 = ρV2
T1
.

Conclusion : la mesure des 3 vitesses du son, dans la direction [110], dans
un cristal de silicium permet de déterminer toutes les constantes élastiques du
silicium. Ci-dessous le tableau complet des relations entre direction de propa-
gation, polarisations et constantes élastiques :

C) Cas d’un matériau orthotrope : bois de balsa ou os

Le bois de balsa et l’os possèdent des propriétés élastiques similaires, ce sont tous deux
des matériaux orthotropes.

Le balsa est un bois léger, dont la densité varie de 40 à 320 kg/m3. Pour la plupart des
applications, il peut être considéré comme un matériau isotrope transversalement, où le plan
isotrope est perpendiculaire à l’axe de la fibre.

L’os est un matériau d’origine biologique qui constitue le squelette, chez les humains ou
les animaux. Il est composé en grande partie de fibres de collagène. Ces fibres définissent un
axe « préférentiel », tandis que le plan perpendiculaire à l’axe est considéré comme isotrope.
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Plan cristallin Direction de propagation Polarisation ρv2 (Si) v (m/s)
(100) [100] L [100] C11 8433

T1 = T2 † (100) C44 5843
(001) [001] L [001] C11 8433

T1 = T2 † (001) C44 5843
L [110] (C11 + C12)/2 + C44 9134

(110) [110] T1 [11̄0] C44 5843
T2 [001] (C11 − C12)/2 4673
L [11̄0] (C11 + C12)/2 + C44 9134

(11̄0) [11̄0] T1 [110] C44 5843
T2 [001] (C11 − C12)/2 4673

(111) [111] L [111] 1
3 (C11 + 2C12 + 4C44) 9360

T1 = T2 † (111) 1
3 (C11 − C12 + C44) 5085

Table 1 – Vitesses et polarisations des ondes, dans les cristaux anisotropes de système cu-
bique. Dernière colonne : valeurs des vitesses dans le cas du silicium (tirées du livre Ondes
élastiques dans les solides, D. Royer & E. Dieulesaint, p. 177)). † : Les deux modes transverses
sont dégénérés.

Le tenseur des constantes élastiques C peut s’écrire de la manière suivante (rappelons
qu’en notation de Voigt : 11→ 1,22→ 2,33→ 3,32/23→ 4,31/13→ 5,21/12→ 6) :

C11 C12 C13 0 0 0
C12 C11 C13 0 0 0
C13 C13 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C66


(2)

avec C66 = 1
2 (C11 − C12).

Dans cet exercice, nous souhaitons montrer que les vitesses du son dans le balsa ou l’os
dépendent de la direction dans laquelle on les mesure, et trouver la relation entre le tenseur
des constantes élastiques défini ci-dessus et les vitesses de propagation du son.

1. En vous aidant de la figure qui donne la forme du tenseur en fonction du système de
symétrie étudié (Fig.3.9. du D.Royer & E.Dieuleseaint), donner le système cristallin
qui équivaut aux propriétés élastiques du balsa. Combien de constantes élastiques
non nulles et indépendantes possède le tenseur C ? Dans quelle direction est orientée
la fibre ?

2. Donner l’équation de propagation pour les ondes planes progressives (cette équation
est appelée équation de Christoffel).

3. On introduit un tenseur Γ appelé tenseur de Christoffel et défini par Γil = Ci jkln jnk.
a. Calculer les 6 composantes indépendantes non-nulles du tenseur Γ pour une

onde plane se propageant suivant une direction quelconque (Aide : Γ33 =

C44

(
n2

1 + n2
2

)
+ C33n2

3 et Γ13 = (C13 + C44)n1n3 )
b. L’onde se propage dans la direction (Ox3). Résoudre l’équation séculaire et en

déduire les vitesses de propagation (Aide : l’équation séculaire est de la forme∣∣∣Γil − ρV2δil

∣∣∣ = 0). Quelles sont les vitesses longitudinales ou transverses ?
c. L’onde se propage maintenant dans une direction quelconque dans le plan

(Ox1x2). Préciser dans ce cas l’expression de ~n. Réécrire Γ en fonction de C11,
C44, C66 et θ : Calculer les vitesses et montrer qu’elles ne dépendent pas de la
direction de propagation. Pour déterminer facilement les polarisations asso-
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ciées, on se placera dans une direction de propagation particulière, [100] ou
[010] au choix.

1. En comparant le tenseur de l’énoncé avec tous les tenseurs de la Fig.3.9 page 128 du
D.Royer & E.Dieulesaint, le système cristallin qui équivaut aux propriétés élastiques
du balsa est le système hexagonal. Le tenseur C possède donc 5 constantes élastiques
non nulles et indépendantes. Sous la figure est indiqué « Ox3//A6, Ox1 quelconque » :
cela signifie que la fibre est orientée suivant Ox3.

2. L’équation de propagation pour les ondes planes progressives est :

ρV2u′i = Ci jkln jnku′l .

3. a. Les 6 composantes indépendantes non-nulles du tenseur Γ pour une onde
plane se propageant suivant une direction quelconque sont

Γ11 = C11n2
1 + C66n2

2 + C44n2
3,

Γ22 = C66n2
1 + C11n2

2 + C44n2
3,

Γ33 = C44

(
n2

1 + n2
2

)
+ C33n2

3,

Γ12 = (C12 + C66)n1n2,

Γ13 = (C13 + C44)n1n3,

Γ23 = (C13 + C44)n2n3.

b. L’onde se propage dans la direction (Ox3) donc l’équation séculaire est

det

C44 − ρV2 0 0
0 C44 − ρV2 0
0 0 C33 − ρV2

 = 0

Les vitesses sont donc
V1 =

√
C33/ρ = VL,

V2 = V3 =
√

C44/ρ = VT.

La vitesses transverse est dite « dégénérée ».
c. Précisons l’expression de ~n lorsque l’onde se propage dans une direction quel-

conque dans le plan (Ox1x2) :

n1 = cos(θ),

n2 = sin(θ),

n3 = 0,

et on peut vérifier que
∥∥∥~n∥∥∥ = 1.

Réécrivons Γ en fonction de C11, C66, C44 et θ :

Γ =

C11 cos2(θ) + C66 sin2(θ) (C11 − C66) cos(θ) sin(θ) 0
(C11 − C66) cos(θ) sin(θ) C66 cos2(θ) + C11 sin2(θ) 0

0 0 C44


On en déduit les vitesses :

VL =

√
C11

ρ
,
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VT =

√
C66

ρ
,

VT =

√
C44

ρ
.

Les vitesses ne dépendent pas de la direction de propagation dans le plan
(Ox1x2) car elles ne dépendent pas de l’angle θ.

Pour déterminer facilement la polarisation, il suffit par exemple de prendre
le cas θ = 0.

Exercice II. Propagation du son dans un solide isotrope

A) Cas sans chargement mécanique

On considère un matériau isotrope de modules de Lamé λ et µ, et de masse volumique
ρ. On rappelle la relation entre le tenseur de rigidité Ci jkl et λ et µ :

Ci jkl = λδi jδkl + µ(δikδ jl + δilδ jk). (3)

On rappelle aussi l’expression du tenseur de propagation (tenseur de Green-Christoffel)
Γil = Ci jkln jnk où ~n représente la direction de propagation.

1) Exprimer le tenseur C en fonction de λ et µ.
2) Exprimer les six composantes indépendantes du tenseur de Christoffel Γ en fonction

de λ et µ.
3) On considère maintenant une propagation dans le plan (Ox1x2), on prendra θ l’angle

entre ~e1 et ~n. Réécrire Γ.
4) Montrer que Γ11 + Γ22 = λ + 3µ, et que (Γ11 − Γ22)2 + 4Γ2

12 = (λ + µ)2.
Indications :

cos2(x) − sin2(x) = cos(2x) (4)

cos2(x) sin2(x) =
1
4

sin2(2x) (5)

cos(2x) = 2 cos2(x) − 1 (6)

5) Exprimer l’équation caractéristique associée au tenseur de propagation pour un champ
de déplacement pris sous la forme d’ondes planes. Déduire les expressions des trois vitesses
de propagation dans une direction quelconque (une vitesse longitudinale VL et une vitesse
transverse VT dégénérée) et montrer que celles-ci ne dépendent pas de la direction.

B) Cas avec chargement mécanique

On suppose maintenant qu’un matériau isotrope est soumis à une contrainte mécanique
σ exercée le long de l’axe 3. On définit un nouveau tenseur, le tenseur acoustoélastique Ai jkl,
défini par la relation tensorielle Ai jkl = Ci jkl + σi jδkl, avec σ� λ, µ.
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6) Donner le tenseur A (en notation contractée de Voigt) en fonction de λ, µ et σ. A est-il
symétrique ?

7) Exprimer alors les neuf composantes du tenseur de Christoffel Γil = Ai jkln jnk.
8) On mesure la propagation du son dans une direction ~n quelconque dans le plan (1,2),

qui est le plan perpendiculaire à la direction de chargement mécanique, et θ est l’angle entre
−→e1 et −→n . Le vecteur direction de propagation s’écrit donc n1 = cos(θ); n2 = sin(θ); n3 = 0).
Montrer que la propagation dans ce plan est isotrope. Exprimer VL et VT.

9) Finalement, on se place dans le plan (1,3) ou (2,3). Montrer que ce plan est anisotrope
vis à vis de la propagation du son. Donner des expressions simples de VL et VT. En déduire
une méthode pour déterminer la contrainte appliquée σ.

Exercice II
Partie A : cas sans chargement mécanique
1)

C11 = C1111 = λ + 2µ

C12 = C1122 = λ

C44 = C1212 = µ

2) Le vecteur direction de propagation ~n possède les 3 composantes n1, n2, n3.

Γ11 = (λ + 2µ)n2
1 + µ(n2

2 + n2
3),

Γ22 = (λ + 2µ)n2
2 + µ(n2

1 + n2
3),

Γ33 = (λ + 2µ)n2
3 + µ(n2

1 + n2
2),

Γ12 = (λ + µ)n1n2,

Γ13 = (λ + µ)n1n3,

Γ23 = (λ + µ)n2n3.

3) Propagation dans le plan Ox1x2 : n1 = cosθ,n2 = sinθ,n3 = 0. On peut vérifier que ~n
est unitaire : ∥∥∥~n∥∥∥ =

√
n2

1 + n2
2 =

√
cos2 θ + sin2 θ = 1

Les composantes du tenseur de Christoffel Γ deviennent

Γ11 = (λ + 2µ) cos2 θ + µ sin2 θ,

Γ22 = (λ + 2µ) sin2 θ + µ cos2 θ,

Γ33 = µ,

Γ12 = (λ + µ) sinθ cosθ,

Γ13 = 0,

Γ23 = 0.

4) Cette question est laissée à l’appréciation du lecteur.
5) L’équation caractéristique peut s’écrire :

(Γ33 − ρV2)
[
(Γ11 − ρV2)(Γ22 − ρV2) − Γ2

12

]
L’obtention des racines en V de l’équation caractéristique permet d’obtenir les vitesses,

qui sont

VL =

√
λ + 2µ
ρ

,
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VT =

√
µ

ρ
.

La vitesse VT de l’onde transverse est dégénérée.
Conclusion : les vitesses ne dépendent pas de θ, donc elles ne dépendent pas de la

direction (cela paraît logique dans un milieu élastiquement isotrope).
Partie B : cas avec chargement mécanique
6) On note σ33 = σ, le tenseur acoustoélastique A s’écrit donc :

A =



λ + 2µ λ λ 0 0 0
λ λ + 2µ λ 0 0 0

λ + σ λ + σ λ + 2µ + σ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ


.

Remarque : A n’est pas symétrique, contrairement à C.
7) Les composantes du tenseur de Christoffel Γ sont les suivantes, dans le cas avec char-

gement mécanique :

Γ11 = (λ + 2µ)n2
1 + µ(n2

2 + n2
3)

Γ22 = (λ + 2µ)n2
2 + µ(n2

1 + n2
3)

Γ33 = (λ + 2µ + σ)n2
3 + µ(n2

1 + n2
2)

Γ12 = (λ + µ)n1n2

Γ21 = (λ + µ)n1n2

Γ13 = (λ + µ)n1n3

Γ31 = (λ + µ + σ)n1n3

Γ23 = (λ + µ)n2n3

Γ32 = (λ + µ + σ)n2n3

8)
Dans le plan (1,2) : n1 = cosθ, n2 = sinθ, n3 = 0 (le vecteur propagation ~n est unitaire).

On trouve le même résultat que dans le cas isotrope. La contrainte appliquée σ33 ne modifie
pas la propagation qui reste isotrope dans le plan (1,2), c’est-à-dire le plan perpendiculaire
au chargement.

9) On se place dans le plan (1,3) qui contient la direction de chargement (Ox3), et on
définit l’angle θ′ entre −→e1 et ~n, d’où n1 = cosθ′, n2 = 0, n3 = sinθ′.

Les 3 racines de l’équation caractéristique sont :

ρV2
1 = λ + 2µ + σ sin2 θ′,

ρV2
2 = µ,

ρV2
3 = µ.

Une méthode simple pour connaître σ (connaissant ρ) :
• il suffit de mesurer V en fonction de θ′ (mais en pratique cette méthode est compli-

quée),
• il suffit de mesurer la vitesse sans chargement Vσ=0 = λ + 2µ puis la vitesse avec

chargement Vσ.
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Pour une onde se propageant dans la direction ~n = (0,0,1), on a sinθ′ = 1 (rappelons
que l’angle θ′ est pris à partir de l’axe −→e1 ) la vitesse Vσ dans l’axe du chargement est de

Vσ =

√
V2

0 +
σ
ρ
, (7)

et le calcul suivant permet de trouver σ :

σ = ρ
(
V2
σ − V2

σ=0

)
.

Valeurs numériques : un écart de 10 m/s représente une contrainte de 0.3 GPa environ.
En-dessous de cette valeur, la contrainte n’est pas mesurable si l’on considère que 10 m/s
est la variation de vitesse minimale mesurable.
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