TD5

Exercice I. Propagation du son dans un solide anisotrope

A) Cas du quartz

On s’intéresse a la propagation du son dans le quartz, qui est un cristal transparent
anisotrope composé de dioxyde de silicium de formule SiO, (classe cristalline : trigonal,
classe de symétrie : 32).

1. Quel est le nombre de constantes élastiques indépendantes ? Ecrire le tenseur C cor-

respondant.

2. Donner I’'équation de propagation pour un milieu continu dans le cas d"un déplace-

ment quelconque noté i(xt).

3. On cherche maintenant les solutions de cette équation sous la forme d’ondes planes

progressives qui se propagent dans la direction 7 telles que

ih-x
i =u'iF|t - ,
ui=u ( V)

ou F est une fonction quelconque. Dans cette expression, que signifient u’; et V' ?

4. Fcrire I'équation de propagation pour des ondes planes progressives (cette équation
est appelée équation de Christoffel).

5. On introduit un tenseur I' appelé tenseur de Christoffel et défini par I'; = Cjjynin.
Expliciter les 6 composantes indépendantes non-nulles du tenseur I' pour une onde
plane se propageant dans une direction quelconque.

6. On souhaite calculer les vitesses de propagation le long de 1'axe (Ox;). Réécrire le
tenseur de Christoffel I' dans ce cas. En utilisant 1’équation de Christoffel, déduire
I'expression des vitesses et les polarisations associées.

7. Application numérique : calculer la valeur des vitesses. On prendra p = 2648 kg/m?,
Ci1 = 86.7 GPa, Cy4 = 57.9 GPa, C¢s = 39.8 GPa, C14 = —17.9 GPa.

Exercice I
A) Cas du quartz

1. Le quartz est de classe cristalline trigonale et de classe de symétrie 32. La forme du
tenseur des constantes élastiques est tabulée

1. Voir D. Rover, E. DieuresaiNt, Ondes Elastiques dans les Solides - Tome 1: Propagation Libre et Guidée,
Masson, Paris, p.128 Fig.3.9



On compte le nombre de composantes indépendantes non nulles et on trouve
6 constantes élastiques indépendantes (ce nombre est indiqué en bas a droite de
la table) : Ci1, Cs3, Ci2, Cas, Ci3, C1a. La composante Cq n'est pas indépendante :
Ces = 3 (C11 — Cn2).
2. L’équation de propagation pour un milieu continu est :

Pui _ o P
ot2 Kl oxjxy
3. Dans lI'équation
, n-x
U; :uiF(t— v ),

u’; est la polarisation de 1'onde, V est la vitesse de propagation, il est la direction de
propagation, et X est le vecteur position (noté 7= ¥ = OM).
4. L’équation de propagation pour des ondes planes progressives est :

2
pVu'; = Cinjma'y,

qu’on appelle équation de Christoffel. On introduit un nouveau tenseur I'y; = Cjjunng
et on obtient
szu’i = Fiﬂ/l/l.

5. On introduit dans cette question le tenseur de Christoffel I'. Le tenseur I' dans le cas
général est donné dans le livre de D. Royer équation (4.11) p.160. Il suffit de reprendre
ces formules pour le cas du quartz (ou de les recalculer), et on trouve |*:

Ty = Ciund + Cetty + Cagnty + 2C1amons,
T2y = Cestt} + Crin5 + Cygniy — 2C1amons,
I35 = C66nf + Cnn% + C44n§ — 2C4nyn3,
I'p = (Cip + Cep)niny + 2Cyynyng,
I'3 = (Ci3 + Cyy)ning + 2Cyyniny,
Iy3 = (Ciz + Cy)rong + C14(n% - ﬂ%)

Complément : voici le détail des étapes du calcul pour la composante I'1, (les
différents termes ont été rangés dans un tableau pour faciliter la lecture) :

étape 1 | I'p = Cunpmng + Cupmng  +  Crgning
+ Cppmong + Ciomhony + Ciopnpha
+ Cppmng + Cppnzng + Cizpnzng

étape 2| Tp= C161’l% + C121’111’12 + C14n1n3
+ C661’117’12 + Cézn% + C641’121’l3
+ C567’l17’l3 + C527’121’13 + C547’l§

étape 3| T2= 0 + Cionin, + C141’111’l3
+ C66Tl17’lz + 0 + 0
+ C141’111”l3 + 0 + 0

2. Voir D. Rover, op. cit, équation (4.50) page 185.



6. Les 3 vitesses de propagation le long de 1’axe Ox; sont calculées a partir de I'équation
de Christoffel.
Direction (Ox;) signifie n = (1,0,0) donc

Chn 0 O
r=10 C66 C14 .
0 C14 C44

On écrit 1'équation séculaire det(l - pV?I3) = 0, qui donne :

Ci1 — pV? 0 0
0 Cos — pV? Cua |=0,
0 Cia Cy — pV?
soit
(G = V) (C—pv2)(Cu—pv?) -2 =0
Les racines de cette équation nous permettent de déduire les 3 vitesses V;, V; et

V3 telles que :
PVf = Cuy,

2pV35 = (Cas + Ceo) £ \/(C66 — Cu)? +4C3, .

Les polarisations sont les vecteurs propres associés a chaque valeur propre pV?.
Ici, V5 correspond a la vitesse d"une onde longitudinale car la polarisation est suivant
’axe de propagation.
7. Application numérique avec les valeurs données dans 1'énoncé :
V1=V, =5722 m/s,
Vy, = Vp, =5101 m/s,
V3 = Vr, =3297 m/s.

B) Cas du silicium

On s’intéresse aux propriétés élastiques du silicium, qui est un cristal anisotrope (systeme
cristallin : cubique, groupe ponctuel : m3m). Nous allons voir que les constantes élastiques
du silicium peuvent étre déterminées a partir de la mesure de vitesses du son.

1. Combien de constantes élastiques non nulles et indépendantes possede le silicium ?

Ecrire le tenseur des constantes élastiques C associé en vous aidant de la figure jointe.

2. Ecrire 'équation de propagation pour les ondes planes progressives (cette équation

est appelée équation de Christoffel).

3. On introduit un tenseur I' appelé tenseur de Christoffel et défini par I'y = Cijyn;n.

a. Expliciter les 6 composantes indépendantes non-nulles du tenseur I' pour une
onde plane se propageant suivant une direction quelconque (Aide : I's3 =
C44(7’l% + n%) + Cnné et F13 = (C12 + C44)n1n3).

b. La propagation a lieu dans la direction [100)]. Résoudre 1’équation séculaire
et en déduire les vitesses de propagation (Aide : 'équation séculaire est de la
forme |F 0= pV26i1| = 0). Quelles sont les vitesses longitudinales ou transverses ?

c. Faire de méme pour la direction [110], en précisant dans ce cas 1'expression
de 7. Quelles sont les vitesses longitudinales ou transverses ?
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d. Dans ce dernier cas (propagation dans la direction [100]), calculer les constantes
élastiques en fonction des vitesses calculées dans la question précédente et de

la masse volumique p.

Exercice 1

B) Cas du silicium

1. Le silicium possede seulement 3 constantes élastiques non nulles et indépendantes,

Ci = Cxp = Cs,

Cio=Cn = Ci3=Cs1 =G = o3,
Cas = Cs5 = Cee.
Le tenseur des constantes élastiques C associé est le suivant :

Cll C12 C12 0 0
Co Cu G2 0 0
Cz2 Co Cu 0 O
0 0 0 Cu4 O

0 0 0 0 Cu O
0 0 0 0 0 Cg4

2. L’équation de propagation pour des ondes planes progressives est :

0
0
0
0 M)

pV*u' i = Cijan ety
qu’on appelle équation de Christoffel. On introduit un nouveau tenseur I'; = Cjjnng

etona
V2 ,'_F' /
P u;=1u.

3. a. Les 6 composantes indépendantes non-nulles du tenseur I', pour une onde
plane se propageant suivant une direction quelconque, sont les suivantes :

I'n= C44(7’l% + n%) + Cnn%,
I'y = C44(i’l% + Tl%) + Cnn%,
F33 = C44(7’l% + n%) + Cnng,
I'p =T = (Cip + Cag)miny,
I'3 =I'31 = (Cip + Cya)ryng,
Iy3 =TIz = (Cip + Caa)noms.
b. La propagation a lieu dans la direction [100].
Can 0 O
I'=10 Cy4 0|
0 0 Cyu

On résoud 'équation séculaire :

C11 — pV2 0 0
det 0 C44 - pVZ 0 =0
0 0 C44 - pV2



Et les vitesses de propagation se déduisent :

Quelles sont les vitesses longitudinales ou transverses : V; est la vitesse
longitudinale, V, et V3 sont des vitesses transverses.
c. Calcul des vitesses longitudinales ou transverses pour la direction [110].
Précisons d’abord 'expression de 7 :

1 - 1 -

7 (Cr1+Ca) 7(C2+Cuy) 0
[=|3(C2+Cu) 7(Cn+Cu) 0

0 0 Cy
C11 + 2C44 + C12
VL = Zp ’
Cy—-C
vy = /%
Vp, = &
P

d. Exprimons les constantes élastiques en fonction des vitesses calculées dans la
question précédente et de la masse volumique p :

Cn = p(Vi - Vi + V1),
Cip = P(Vf - V%l - V%Z)/
C44 = erzfl
Conclusion : la mesure des 3 vitesses du son, dans la direction [110], dans
un cristal de silicium permet de déterminer toutes les constantes élastiques du
silicium. Ci-dessous le tableau complet des relations entre direction de propa-

gation, polarisations et constantes élastiques :
| |

C) Cas d’un matériau orthotrope : bois de balsa ou os

Le bois de balsa et I'os possedent des propriétés élastiques similaires, ce sont tous deux
des matériaux orthotropes.

Le balsa est un bois léger, dont la densité varie de 40 a 320 kg/m>. Pour la plupart des
applications, il peut étre considéré comme un matériau isotrope transversalement, o le plan
isotrope est perpendiculaire a 1’axe de la fibre.

L’os est un matériau d’origine biologique qui constitue le squelette, chez les humains ou
les animaux. Il est composé en grande partie de fibres de collagene. Ces fibres définissent un
axe « préférentiel », tandis que le plan perpendiculaire a I’axe est considéré comme isotrope.
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Plan cristallin | Direction de propagation | Polarisation pv* (Si) v (m/s)

(100) [100] L [100] Cn 8433
T1 = T2 'l' (100) C44 5843

(001) [001] L [001] Cn 8433
T, =T, t (001) Cy 5843

L [110] (C11 + C12)/2 + Cy 9134

(110) [110] T: [110] Cy 5843
T, [001] (Ci1 —Cyp)/2 4673

L [110] (Cll + C12)/2 + Cyy 9134

(110) [110] T, [110] Cy 5843
T, [001] (Ci1 —Cyp)/2 4673

(111) [111] L [111] 3 (C11 +2C1p +4Cy4) 9360
Ti1=T, T (111) % (C11 —Cpp + C44) 5085

Table 1 — Vitesses et polarisations des ondes, dans les cristaux anisotropes de systeme cu-
bique. Derniere colonne : valeurs des vitesses dans le cas du silicium (tirées du livre Ondes
élastiques dans les solides, D. RoYER & E. DIEULESAINT, p. 177)). T : Les deux modes transverses

sont dégénérés.

Le tenseur des constantes élastiques C peut s’écrire de la maniere suivante (rappelons
qu’en notation de Voigt : 11 — 1,22 — 2,33 — 3,32/23 — 4,31/13 — 5,21/12 — 6) :

avec Ces = = (C11 — Cr2).

Chn Cp C3z 0

Cio Ciu Ciz 0

Cis C3 C 0
0 0 0 Cy
0 0 0 0
0 0 0 0

0 0
0 0
0 O
0 0

()

Dans cet exercice, nous souhaitons montrer que les vitesses du son dans le balsa ou I'os
dépendent de la direction dans laquelle on les mesure, et trouver la relation entre le tenseur
des constantes élastiques défini ci-dessus et les vitesses de propagation du son.

1. Envous aidant de la figure qui donne la forme du tenseur en fonction du systéme de

symétrie étudié (Fig.3.9. du D.Royer & E.Dieuleseaint), donner le systeme cristallin
qui équivaut aux propriétés élastiques du balsa. Combien de constantes élastiques
non nulles et indépendantes possede le tenseur C? Dans quelle direction est orientée

la fibre?

2. Donner l"équation de propagation pour les ondes planes progressives (cette équation
est appelée équation de Christoffel).

3. On introduit un tenseur I' appelé tenseur de Christoffel et défini par I'y = Cijyn;n.
a. Calculer les 6 composantes indépendantes non-nulles du tenseur I' pour une

onde plane se propageant suivant une direction quelconque (Aide :

C44(1’l% + Tl%) + C331’l§ et [';3 = (C13 + Cyy)n1n;3 )

b. L'onde se propage dans la direction (Ox3). Résoudre 1'équation séculaire et en
déduire les vitesses de propagation (Aide : 'équation séculaire est de la forme
|T = ‘DV261‘1| = 0). Quelles sont les vitesses longitudinales ou transverses ?

c. L'onde se propage maintenant dans une direction quelconque dans le plan
(Ox1x,). Préciser dans ce cas l'expression de 7. Réécrire I' en fonction de Cyj,
Cu, Cee et O : Calculer les vitesses et montrer qu’elles ne dépendent pas de la
direction de propagation. Pour déterminer facilement les polarisations asso-
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ciées, on se placera dans une direction de propagation particuliere, [100] ou
[010] au choix.

1
En comparant le tenseur de 1’énoncé avec tous les tenseurs de la Fig.3.9 page 128 du
D.Royer & E.Dieulesaint, le systéme cristallin qui équivaut aux propriétés élastiques
du balsa est le systéme hexagonal. Le tenseur C possede donc 5 constantes élastiques
non nulles et indépendantes. Sous la figure est indiqué « Ox3//A¢, Ox; quelconque » :
cela signifie que la fibre est orientée suivant Oxs;.

L’équation de propagation pour les ondes planes progressives est :

2.7 _ B . /
pViu; = Cljkln]nkul.

a. Les 6 composantes indépendantes non-nulles du tenseur I' pour une onde
plane se propageant suivant une direction quelconque sont

Iy = Ciyni + Ceotty + Caari3,

Ty = Cett; + Cri15 + Caani3,

'3 = C44(nf + n%) + C33n§,
'y = (Crz + Cep)rany,
'3 = (Ci3 + Ca)mins,
Iy = (Ciz + Cag)nons.

b. L'onde se propage dans la direction (Ox3) donc 1'équation séculaire est
Cu — pV? 0 0

det 0 C44 - pVZ 0
0 0 C33 — pVZ

Vi=+Css/p =V,
Vo,=V3= \/C44/p =Vr.

La vitesses transverse est dite « dégénérée ».
c. Précisons I'expression de 7 lorsque 1’onde se propage dans une direction quel-
conque dans le plan (Ox1xy) :

0

Les vitesses sont donc

ny = cos(6),
n, = sin(6),
nz =0,

et on peut vérifier que ||if]| = 1.
Réécrivons I' en fonction de Cyq, Cgg, Cyq €t O :

I' =|(C11 — Ceg) cos(0) sin(0) Ces cos2(0) + Cyy sin*(6) 0
0 0 Cy

On en déduit les vitesses :

C11 c0s2(0) + Cee sin*(0) (Ci1 — Ceg) cos(0)sin(6) 0 ]



Vr=1|—,
P
Vr = &
P

Les vitesses ne dépendent pas de la direction de propagation dans le plan
(Ox1x7) car elles ne dépendent pas de 'angle 0.
Pour déterminer facilement la polarisation, il suffit par exemple de prendre
le cas 0 = 0.
| |

Exercice II. Propagation du son dans un solide isotrope

A) Cas sans chargement mécanique

On considére un matériau isotrope de modules de Lamé A et p, et de masse volumique
p. On rappelle la relation entre le tenseur de rigidité C; et A et u :

Cijt = Abijb + (00t + 6udjk). 3)

On rappelle aussi I'expression du tenseur de propagation (tenseur de Green-Christoffel)
I'y = Cijunjng ou il représente la direction de propagation.

1) Exprimer le tenseur C en fonction de A et p.

2) Exprimer les six composantes indépendantes du tenseur de Christoffel I' en fonction
de A et p.

3) On considere maintenant une propagation dans le plan (Ox;x;), on prendra 0 I'angle
entre ¢; et 1. Réécrire I'.

4) Montrer que I'ty + ' = A + 3, et que (I'y — I'p)* + 4173, = (A + p)*

Indications :

cos?(x) — sin*(x) = cos(2x) (4)
cos?(x) sin(x) = %sin2(2x) (5)
cos(2x) = 2 cos?(x) — 1 (6)

5) Exprimer I’équation caractéristique associée au tenseur de propagation pour un champ
de déplacement pris sous la forme d’ondes planes. Déduire les expressions des trois vitesses
de propagation dans une direction quelconque (une vitesse longitudinale V; et une vitesse
transverse Vy dégénérée) et montrer que celles-ci ne dépendent pas de la direction.

B) Cas avec chargement mécanique
On suppose maintenant qu'un matériau isotrope est soumis a une contrainte mécanique
o exercée le long de I’axe 3. On définit un nouveau tenseur, le tenseur acoustoélastique A;j,

défini par la relation tensorielle A;j = Cjju + 0,i0n, avec 0 < A, .
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6) Donner le tenseur A (en notation contractée de Voigt) en fonction de A, u et 0. A est-il
symétrique ?

7) Exprimer alors les neuf composantes du tenseur de Christoffel I'; = A;jn ny.

8) On mesure la propagation du son dans une direction 7 quelconque dans le plan (1,2),
qui est le plan perpendiculaire a la direction de chargement mécanique, et 0 est I’angle entre
e et 7. Le vecteur direction de propagation s’écrit donc 1y = cos(0);n, = sin(0);n3 = 0).
Montrer que la propagation dans ce plan est isotrope. Exprimer V| et V7.

9) Finalement, on se place dans le plan (1,3) ou (2,3). Montrer que ce plan est anisotrope
vis a vis de la propagation du son. Donner des expressions simples de V; et V. En déduire
une méthode pour déterminer la contrainte appliquée o.

| |
Exercice II
Partie A : cas sans chargement mécanique

Ly
Cii=Cun=A+2u
Cp=Cun=A
Cau=Cpp = 1%

2) Le vecteur direction de propagation # posseéde les 3 composantes 14, 1y, 1.

T = (A +2unt + u(ng +n3),
To = (A +2u)n; + p(nd +n3),
T3s = (A +2u)nj + p(nd +n3),

I'o = (A + wmny,

I's = (A + wmns,

Iy = (A + p)nons.

3) Propagation dans le plan Ox;x; : 11 = cos 6,1 = sin 6,13 = 0. On peut vérifier que 7

est unitaire :
”ﬁ“ = 2 +n? = Veos2 6 +sin6 =1

Les composantes du tenseur de Christoffel I' deviennent

Iy = (A +2u)cos? 0 + usin® 6,
T2 = (A +2u)sin® 0 + pcos® 0,

I33=u,

I'p=(A+ u)sinOcos 0,
I'3 =0,
Iy =0.

4) Cette question est laissée a 'appréciation du lecteur.
5) L'équation caractéristique peut s’écrire :

(I35 — PVZ)[(FH - PVZ)(Fzz - PVZ) - F%z]

L’obtention des racines en V de I'équation caractéristique permet d’obtenir les vitesses,
qui sont
A+2
VL = H s
p




ve= £
p

La vitesse V1 de l'onde transverse est dégénérée.

Conclusion : les vitesses ne dépendent pas de 0, donc elles ne dépendent pas de la
direction (cela parait logique dans un milieu élastiquement isotrope).

Partie B : cas avec chargement mécanique

6) On note 033 = 0, le tenseur acoustoélastique A s’écrit donc :

A+2u A A 0 00

A A+2u A 0 00

A= A+o A+o0 A+2u+0 0 0 O
1 0 0 0 p 0 0
0 0 0 0 u O

0 0 0 0 0 u

Remarque : A n’est pas symétrique, contrairement a C.
7) Les composantes du tenseur de Christoffel I sont les suivantes, dans le cas avec char-
gement mécanique :

Ty = (A +2uns + p(ns +n3)
Ty = (A +2u)n; + p(ns +n3)
T35 = (A +2u +0)nj + u(nd +n3)
I'p = (A + p)niny
Iy = (A + p)nny
I'z = (A + p)mns
I3 = A+ p+o)nn;

Iy3 = (A + p)nong
I3 = (A + u+o)nyng

8)

Dans le plan (1,2) : n; = cos 0, n, = sin 0, nz = 0 (le vecteur propagation il est unitaire).
On trouve le méme résultat que dans le cas isotrope. La contrainte appliquée 033 ne modifie
pas la propagation qui reste isotrope dans le plan (1,2), c’est-a-dire le plan perpendiculaire
au chargement.

9) On se place dans le plan (1,3) qui contient la direction de chargement (Ox3), et on
définit ’angle 0" entre ?1) et 71, d’ott ny = cos 0, n, =0, n3 =sinO’.

Les 3 racines de 1’équation caractéristique sont :

pVi=A+2u+osin’0,
2 _
pVa=i
2 _
pVs = u.

Une méthode simple pour connaitre ¢ (connaissant p) :

e il suffit de mesurer V en fonction de 0" (mais en pratique cette méthode est compli-

quée),

e il suffit de mesurer la vitesse sans chargement V,_o = A + 2u puis la vitesse avec
chargement V.
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Pour une onde se propageant dans la direction 77 = (0,0,1), on a sin6®’ = 1 (rappelons
que I'angle @’ est pris a partir de I'axe e;) la vitesse V, dans I'axe du chargement est de

v, = v§+%, @)

et le calcul suivant permet de trouver o :
2 _ 12
0= p(vo - ch:O)'

Valeurs numériques : un écart de 10 m/s représente une contrainte de 0.3 GPa environ.
En-dessous de cette valeur, la contrainte n’est pas mesurable si 'on considere que 10 m/s
est la variation de vitesse minimale mesurable.
| |
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