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The quantum Graal

H|V) = E|T)

H 1s the nonrelativistic Hamiltonian

Density n(r) = > .(¥|6(r —r;)| ).
Atoms or small molecules: direct diagonalization
Solids: Density functional theory

Solids: Green functions with non-perturbative
approximations (GW approximation, Bethe-Salpeter
equation)
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The Gell-Mann and Low theorem \

Perturbation theory H = Hy + H;

N

Hy= =Y oo+ S Valr). = Vil — 1)

m
i=1 i=1 i

Adiabatic switching H (et) = Hy + f(et)H;
Interaction picture H'™(¢) = f(et)e*ot H e~ tHot

Evolution operator

Ul(t,t') = i (_ni)n /dtl...dtnT(Hint(tl)...Hint(tn))

If |®g) is the non-degenerate ground state of Hy:

‘\IJGL> — lIim U<07 _OO>‘(I)0>

IS an eigenstate of H
e—0 (P|U(0, —00)|Pg) J

Proof by Nenciu and Rasche (Helv. Phys. Acta 62 (1989)
p.372-88) if f, f' and f” are in L' and if H, and H; are
self-adjoint, H, is bounded from below and H is bounded
with respect to Hy: for |¢) in the domain of H,

IH )| < all Hol)]] + bll1)]| with a < 1. .
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The Gell-Mann and Low theorem: discussion

e | Uy, isan eigenstate of H but not necessarily the ground
state of H.

e Rule of thumb: The Gell-Mann and Low state is the
ground state of the interacting system if the energy
difference between the ground state and the first excitated
state of the non-interacting system is large compared with
the interaction energy.

e This condition rarely satisfied in practice

e The Gell-Mann and Low theorem is not valid for
degenerate or quasi-degenerate non-interacting systems

e The standard Green function (i.e. many-body) theory does
not work for open shell systems.

- /
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Solution: Green functions for open shells

Start from a set of low-energy states |i) of the
non-interacting system

Transform them into states of the interacting system by

Calculate the energy matrix of the interacting system

H;j = (i|U(400,0) (Ho + H™(0))U(0, —00)|5)

Diagonalize it

The matrix to diagonalize is very small (it contains only
the lowest energy states of the non-interacting system)

Powerful non-perturbative methods of the Green function
theory can be used to calculate H;;.

Describes the degeneracy splitting due to the interaction

/




/ Green functions for open shells: density matrix \

e Start from a density matrix p = > ;. pi;|7)(j| of the
non-interacting system

e Calculate the energy F(p) of the interacting system
e Minimize E(p) with respect to p
e Preserves the symmetry of the system

e Green functions
— Self-consistent determination of the orbitals

— Resummation of infinite families of terms of the
perturbative expansion

— Detailed description of the electron-hole interactions
through the Bethe-Salpeter equation

— Beyond the coupled-cluster method
e The many-body theory is recovered for closed shells

e The crystal field equations are recovered as the first term
of the perturbative expansion of the equations for the
\Green functions for open shells /




/ The Green functions \

e One-body operators

()= 2w (Wl D F(e0)[ W) = D tr(pf(re)).

e Examples
— The electron density (n(r)) = >, tr(pd(r — r;)).
— The velocity (v) = >, tr(pV;).

e The one-body Green function G(z, y) with x = (r,t) is

such that, for any one-body operator f

o = -+ / 3(G(x,2)) f(r)dr

7

e Two-body operators (Coulomb energy, dielectric function)

(9) = Ztr(ﬁg(ri, r;)).

e The expectation value of two-body operators can be
calculated from the two-body Green function

Ga(x1,22,Y1,Y2)
\ /




/ The generating function for the Green functions \

e There is a function Z(j), with j = (54, j_), that generates
all the Green functions. For example

)
e = S wem

e A(yp) is the interacting Hamiltonian

O [ A el ol

8meg r — 1/

Alp) =

o Z(j)=e""PZy(j)withD = A(2-) — A(52)

107+ 107 _

and Zy(j) = "0l with

Wo(j) = _%/j(@Go(m,y)j(y)_|_Kp(j+_|_j_)
Kp(k) = log (tr(ﬁ:eifdxso(w)k(x):))

e Cumulants of p (initial correlations)

K,y(k) = /dxldle,gl)(wlayl)k(xl)k(yl)—|—

\ /da}dyK;()Q)(ﬂ?l,m,y1,y2)k($1)k($2)k(yl)k(y2) "‘/




/ Correlation as propagators \

e One-body correlation function

KD @y) = D pulil(pe @)l = g-=mrj

e One-body propagator: Gg = G% + K,()l).
e Two-body correlation function

- — —p — —

D pi il @) (@) ly)vly)li) = = P r e g |
1] T2 Y2 T2 Y2 T2 Y2

K
e Two-body propagator: K f,z)(xl,:z;g,yl,yg)

— it is zero for a single Slater determinant |:)

— 1t is the source of the multiplets

e Three body propagator

5 . 1 Y1
Ké)(x1,$2,$3,ylay2ay3> I Y2

T3 Y3

— beyond the multiplets

e For a M-fold degenerate system, up to M -body

\ propagators /




/ Perturbative expansion \

o Green function G(z,y) = —Z716,(,)0;(;) 2

o Use Z = e P Z, and expand the exponential

D= = —— e Z TR o IO

e Cancellation theorems

e Early history
— Schwinger 1960
— Kadanoff Baym 1962
— Keldysh 1965

e Assuming K,()”) = 0 for n > 1: around 1000 papers

o Keeping all K ,()”): 4 papers, 49 pages
— Fujita 1969
— Hall 1975

\ — Tikhodeev and Kukharenko 1982 /




The Hopf algebra of derivations

The algebra

A algebra of differential operators with constant
coefficients

Generators of A: partial derivatives 9; = -2,

Basis of A: multiple partial derivatives -— 8”(9:6‘ for
'Ll LRI /Ln
n > 1.

Product: derivatives of derivatives 0,0; = Gx?gx_
7 J

Unit1: forany D € A, D1 =1D = D.

.1 o) o?
Example: 1+ 50 — 455,05 € A.

A with the product of derivations is a unital associative
algebra.

/
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The Hopf algebra of derivations

The coproduct

e Action of the derivations on functions
1(fg9) = fg.
0i(fg) = (0if)g + f(Dig).  (Leibniz)
0;0;(fg) = (9:0;f)g + (9:f)(9;9)+
(05 F)(0ig) + f(0:0;9).
e D(fg) =>_(Du,/)(D9)-
e AN A A® A AD=> D, ®Ds,.
e Coproduct
Al=1®1.
AD; =0, 1 +1® 0,.
AD;0; = 0;0; @1+ 0; ® 0; + 0; ® 9; + 1 ® 9;0;.
e A(DD") = (AD)(AD')
A(0;0,)=(0;®1+1®0;,)(0; ®1+1® 9I;).

- /




/ Coproduct: splitting into two parts \

AD =) Du @ D,

A(0;0;) =0;0;, ®14+0; ®0; +0; ® 0; + 1 ® 0,0,

Splitting into three parts?

SR

G
o
Cry
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Coassociativity

AD =) .Du ® Dy,

EARE S

> (ADq)) ® D,
(A ®Td)AD —

> Dy @ (AD )
(Id®@A)AD =3 D)y ® Dy @ D,

/




The Hopf algebra of derivations

Coassociativity

o D(fg) =2 (D f)(Dw=9)
o fgh=fgh=f

o D(fgh)= 2 (Duw,([9) (D)) =2(Duwy[)(D(9h))
=2 (Day/ )N D29)(Ds)h).

e Example A0; =0, ® 1+ 1® 0,.
(A®Id)A0; = (AJ;) @1+ (A1) ® 0;
=0, ®1R14+1R0;,1+1R1K 0.
(Id ® A)AY; = 0; ® (A1) +1 ® (A0;)
=0, ®1R14+1R0;,1+1R1K 0.

® D(fi- - fn) =2.(Dyf1) -+ (D fn)-

- /
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Second step of the calculation of Z(5)

We want to calculate
Z = e Pz,
We put Z, = "o with

—3 Ji(@)G(z,9)i(y) + Kp(j+ +j-)
- Kp IS the generating function of the cumulants of p

We take the functional derivative with respect to j(x)

= ? —e ! Zo ).
i@y i) (5j<:c> )
Coproduct

5]5<Z$) — Z((e_w)u)%> ((e_iD)@)ZO)-

How to calculate Ae—*"
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Resummation of Ae— "

Perturbative formula

Ae P = 1®1+Z(_) AD"™

Problem A D™ contains the term 1 @ D™ so that Ae~ %L is

an infinite series

Reduced coproduct with respe

ctto D:

A'D = AD—-19D-D®1

= Y D
A'(D") = Y D

Examples:
- IfD=4;then A’D" =0

1y @ Dy,

Z/)D(ll) ® D

—IfD = (5? then A’D™ = 267 ® 0}

The degree of D7}, and D7,

IS at least n

n
(2")

D(Q/).

/




/ Resummation of Ae—:P \

e Main identity

AD™) = )

1+j+k=n

DF.

n!
Dz

j 1
g Dot @D

(2")

e Consequence (for any commutative Hopf algebra and any
D of degree > 0)

1
D n n
Ae” = n'D(l)e ®D(2)
n=0

= (Ae”)(e” ®e?).

e Generating function

0Z - (_Z)n n —iD 5W0
S C 2 > (Dl 5;’(:1;))

n=0
(D~ 2)
S (o ) (o1

with Wy = e_iDW()

KThe sum Is now finite /




/ Hierarchy of Green functions \

e Green function
027

T lj=0 =

3(2)07(y)

-2 (_ni!)n 2. (DZ” 53'(5:[;)V5Vj1(y)) (Dg,)z)

G(iE, y) -

> S 5 (P 55) (Pi53)

e In diagrams, for K, of degree 4

PR~ - 1
+~<¢3~@«+3@—
WG G 4.

N e
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Hierarchy of connected Green functions

e The connected Green functions are generated by
W =log Z

e The reduced coproduct

Ad = Ad-1®d—-—d®1

e Main identity: if the degree of d is > 0

n

d(u") = Z (Z) u" " Z diyu . ..dgu,

k=1

e Consequence: if f(z) is analytic

2 B (w
d(f(u) = Zf k'( )Zd@)u...d@u,
k=1

e In particular
=1
d(e") = e Z o] Zd@)u. o du.
k=1

- /
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Hierarchy of connected Green functions

o We define W by Z = e

o \\e rewrite

- S EES (o) (Pe)

e For connected Green functions

W1 67
6j(x) — Zbj(x)
(=) = 1 Wy
= 2S5 Pl

( g’)(;)W) (D(z )(k)W)'

e The sum is finite because the degree of each D, ;) Is
greater than zero and their sum is the degree of D"
which is finite

- /

(2)!




/ What is yet to be done \

e Determine the structure of the Green functions

e Write Green functions in terms of one-particle irreducible
vertices
e For the one-body Green function G
— Closed shells G = G° + GG
— Open shells (Hall 1974)

— — —>
G = MG+ ¥)M(1+XG)
with
M = 1+ (2)" and M=1+Y (%)
n=1 n=1
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The self-energy: source of the problem

(z@t - HQ)GO =1

Closed shell case:

G=G"+G"52G < (i0,— Hy)G=1+3%G

But (i0; — Hy)f = 0 has solutions

Hierarchy for G

PR N 3

because

Py B
e R + =D

e (i0; — Hy)G Kkills all the terms except for the first two

5K,

~

/
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Signs of hope

e Define auxiliary Green functions

— —

G = (1+GL)M
— —

G = MO1+3G)
G = ME+2GL)M

e The Hall equation becomes G = G° + G°%G,

with

)
(@)

I
-
— @

(@)
N~ —

Y
I
7
QT Q

Ml Qo =
N———

M
|
MT ™M
N~ —

e (9 is now invertible

.




The Bethe-Salpeter equation

Two-body Green function Ga(x1, x2, Y1, Y2)
Closed shells Gy = G1G1 + G1G1 KGo

K i1s a two-particle irreducible kernel

Open shells ?

Legendre transforms ?




/ Conclusion

e The closed-shell case is well mastered
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The method of generating functions

o A — f Hmt
o A= [daV(p(z))withz = (t,r)

e In fact
u 8:;260 / @(w)@(w')ﬁit_—:ﬁso(w')so(w) s
e The S-matrix is
S = U(—oo,oo):T(e_iA).
e Generating function
S(j) = T(e—iA+ifdwso(x)j(w))
- o (i (e )
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The generating function for the Green functions

e The one-body Green function G(z, y)
G(z,y) = tr(pST(HT(¢(x)p(y)S(4)))li=0-
e Doubling of sources
Z(js.5-) = tr(pST(5-)S(+))-

e Generates the Green functions

Z(j-|-7 ]—)
07+ ()04 (y)

G(z,y) = (-i)°

je=j_=0-

e Calculation of the generating function, j = (j.,7_)

. .
Z2(j) = exp (- A ) 4G ))

tr(ﬁT (e ] Ao @) (i) dw(w)j+<w>))

- /
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First step of the calculation of Z(7)

e \We want to calculate

Z(j) = exp ( — 'LA(5]:Z((L)) + 1 A( ._M ))

tr (pAT(ez’fd:BsO(w)j_ (:B))T<ezfd:cg0(a;)]+(x))>
e Compute the trace

Zo(j) = tr([;f(ez‘fdw(x)j_(x))T(ez'fdw(x>j+<as>))
— o3 JI@GC (@)W +K, G+ +i-)
with K, (j; + j_) = log (tr(p“;eifd:vso(w>(j+(w)+j—(w));))
e Define the differential operator
—id —id
0j+ () |

e The generating function becomes

D = A

Z(j) = e “PZy(5).

- /




