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Abstract

We explore the role of electron correlation in quasi one dimensional quantum

wires. We consider the effects of experimental parameters on the interac-

tion, including screening by gates and other wires as well as the strength of

the confinement to one dimension. We present the results of highly accu-

rate quantum Monte Carlo calculations of the energy of the electron gas at

various densities and polarizations. This data which is available along with

this dissertation allows the construction of exchange-correlation functionals

suitable for density functional calculations. We present sample functionals

which are valid at any given density.

In the case of unscreened interactions with a long range 1/x tail there

is a crossover from a liquid to a quasi Wigner crystal state as the density

decreases. When this interaction is screened, quasi long range order is pre-

vented from forming, although a significant correlation with 4kF periodicity

is still present at low densities. At even lower electron density, exchange is

suppressed and the electrons behave like spinless fermions. These results are

also supported by calculations of the momentum resolved spin and charge

excitation energies. The long wavelength portions of these spectra also are

used to calculate the spin susceptibility and charge compressibility of the

electron gas.

Our calculations are quantitatively exact which allows us to compare with

recent experiments [Steinberg et al., Phys. Rev. B 77, 113307 (2006)], by

introducing an accurate model for the screening in the experiment and ex-

plicitly including the finite length of the sample in our simulations. We find

that decreasing the electron density drives the system from a liquid to a

state with rather strong 4kF correlations. This crossover takes place around

22 µm−1, near the density where the electron localization occurs in the exper-

iment. The charge and spin velocities determined from the long wavelength

excitation spectra are also in good agreement with the experimental findings.
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We argue that correlation effects play an important role at the onset of the

localization transition.
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Chapter 1

Introduction

This dissertation is concerned with calculating the properties of the one di-

mensional electron gas both in an effort to further the theoretical under-

standing of correlations in one dimension and also to provide insight into the

experimental observation of quasi one dimensional fermions. This introduc-

tion will present a summary of the current theory of the one dimensional

electron gas with emphasis on the areas where this dissertation will add to

the understanding.

The electron gas is an important model in condensed matter physics. The

Fermi Liquid theory of electrons provides a method of mapping the physics

of nearly free electrons onto the physics of materials. This insight has proved

endlessly useful and is a crucial underpinning of one of the most successful

techniques in computational electronic structure theory, Density Functional

Theory (DFT). The study of the electron gas in one or two spatial dimensions

was originally considered a theoretical curiosity with little practical applica-

tion. However, now systems of two dimensional electrons are routinely used

in semiconductor devices, and one dimensional electrons are realized by sev-

eral different experimental techniques. In one dimension the Fermi liquid

theory fails completely and as a result the electron gas has several character-

istics not seen in higher dimensions. Specifically, the elementary excitations

of the one dimensional electron liquid no longer carry both charge and spin,

but are separated into entities that carry only one or the other.

1.1 Luttinger Liquid Theory

The very successful Luttinger liquid (LL) theory of one dimensional fermions

was proposed by Luttinger and Tomonaga [1, 2]. This theory predicts several

important phenomena, such as a power law decay in the occupation number

at the Fermi Surface and spin charge separation. There have been several

1



extensive presentations of the properties of Luttinger liquids in the literature,

for examples see references [3, 4, 5, 6, 7]. This section will give a brief

overview of the Luttinger liquid theory and will summarize some of its most

important results. The notation in this section is consistent with that used

by Giamarchi in chapter 2 of Quantum Physics in One Dimension [5].

It is possible to construct a general model that has all of the essential

features of the LL. This LL model was proposed by Luttinger in 1963 [1],

but its proper solution was left to Mattis and Lieb in 1965 [8]. As this model

is intended to describe the low energy excitations of the 1D electron gas, the

one-electron dispersion relation is linearized about the Fermi points. This lin-

earization has two immediate consequences. Firstly, the electrons now have

a different dispersion relation depending whether they are moving toward

the left or toward the right. Secondly, this linearization results in a drastic

simplification of the Hamiltonian. It is possible to write the Hamiltonian in

terms of bosonic fields

φρ(x) = −iπ
L

∑

p 6=0

1

p
e−ipx [ρ+(x) + ρ−(x)] (1.1)

φσ(x) = −iπ
L

∑

p 6=0

1

p
e−ipx [σ+(x) + σ−(x)] (1.2)

where ρ+,−(p) and σ+,−(p) are the usual charge and spin density operators

for the left or right going fermions. Additionally Π′s are defined which are

momenta conjugate to those fields. Using these definitions, the Hamiltonian

separates into two commuting parts involving only charge and spin terms

Ĥ = Ĥσ + Ĥρ

Ĥρ =
1

2π

∫

dx

[

uρKρ(πΠρ(x))
2 +

uρ

Kρ

(∇φρ(x))
2

]

Ĥσ =
1

2π

∫

dx

[

uσKσ(πΠσ(x))2 +
uσ

Kσ
(∇φσ(x))

2

]

+Hbs

∫

dx cos(2
√

2φσ(x)) (1.3)

where Hbs describes the scattering from the left moving branch to the right

moving branch and vice versa, Kσ and Kρ describe the correlations and uσ

and uρ the spin and charge velocities. All of these are the interaction de-

pendent LL parameters that describe the correlations in the system. The

2



spin rotation invariance of the system enforces Kσ = 1 and when the system

has continuous translational invariance the Galilean invariance requires that

Kρ = vF/uρ. Therefore the behavior of the LL is reduced to just two param-

eters in the case of a translationally invariant Hamiltonian. In the case of

noninteracting electrons the spin and charge velocities are exactly equal to 1

and the properties of the model are determined. However for repulsive inter-

actions the charge velocity is increased relative to vF and the spin velocity

is suppressed.

The primary significance of Eq. 1.3 is that the Hilbert space of the prob-

lem can be written as a direct product of a charge and spin spaces. This

phenomenon is known as spin charge separation and is a striking feature of

one dimensional physics. The consequence of this is that no single particle

excitations (which would necessarily carry both charge and spin) are possible

in one dimension. Additionally the momentum distribution of the electrons

can be found yielding

n(k) ∝ |k − kF |
1

4(Kρ+K−1
ρ +Kσ+K−1

σ )−1 , (1.4)

which vanishes algebraically at the Fermi level. This has a consequence for

tunneling experiments where the probability to tunnel into the LL is propor-

tional to the density of states at the Fermi level. Eq. 1.4 means that for a

LL, the tunneling current is proportional to a power law of the temperature

instead of the exponential behavior of a Fermi liquid. The Hamiltonian can

be solved exactly when Hbs is zero as well as having low energy solutions via

the renormalization group for finite Hbs [9]. Given this solubility, physical

properties of the system such as the compressibility and the long range be-

havior of the correlation functions can be determined. For instance the pair

correlation function of the electron gas becomes

〈ρ(x)ρ(0)〉 ∝ cos(2kFx)

(

1

x

)1+Kρ

+ cos(4kFx)

(

1

x

)4Kρ

, (1.5)

where we note that all of these properties apply only to systems with short

range interactions.
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1.2 Long Range Interactions in One

Dimension

Although there are physical systems (e.g. ultracold gases) where particles

confined to one dimension have interactions with an extremely short range,

electrons in semiconductors typically interact via a long range pair potential.

The behavior of one dimensional electrons in the presence of such a long range

potential was studied in a seminal paper by H. Schulz [10]. He found that

for a potential that decays as 1/x at long range, the pair correlation function

has components that decay more slowly than any power law. Specifically he

found that the 2kF and 4kF components of the pair correlation function had

the slowest decay and at long range were

〈ρ(x)ρ(0)〉 ∝ A1 cos(2kF )e−c2
√

ln x/x+ A2 cos(4kF )e−4c2
√

ln x + . . . (1.6)

where A1, A2 and c2 are interaction dependent constants. Schulz was also

able to show that it was only the long range behavior of the interaction that

was responsible for this behavior and not the strength of the interaction.

Specifically he found that for an interaction that decayed as 1/xα at long

range, if α < 1 a full crystalline order developed, if α = 1 the quasi order of

Eq. 1.6 was present and if α > 1, the power law decay of the standard LL

theory applied.[10, 11, 12]

In this work we study the results of calculations of the static structure fac-

tor (which is related to the pair correlation function by a Fourier transform)

for several forms of the interactions at several interaction strengths. Our

results confirm the predictions of Schulz, but find for high densities (weak

interaction strength) that the prefactor of these correlations is vanishingly

small and only as the interaction strength increases do these correlations be-

come important. This crossover and its significance is discussed in chapter

6.

1.3 Comparison to Experiments

Although the general properties of the LL are known this theory is not pre-

dictive because its parameters are not determined. It is possible to compute

them given a microscopic interaction by determining the spin and charge

4



velocities or alternatively the charge compressibility and spin susceptibility

as was carried out by Häusler et al. [13, 14]. This work is necessary because

experiments have many methods of confining the electrons and experience

various degrees of screening from a variety of sources as will be discussed

in chapter 2. Thus one of the primary results of this work is providing an

ab initio quantitative connection between the properties of the one dimen-

sional electron gas and the LL paradigm for several different experimentally

relevant interactions.

1.4 Organization

This dissertation will use electronic structure techniques to study the rela-

tions between the theory of one dimensional systems of Fermions and ex-

perimental realizations of one dimensional electrons. Chapter 2 presents

an overview of the experimental systems in which quasi one dimensional

Fermions are observed. Chapters 3 and 4 will present a model for calculating

the properties of the one dimensional electron gas and the methods to perform

these calculations in the ground state. Chapter 5 develops an understanding

of the energy of the electron gas as a function of the density and electronic

polarization, calculating this energy via quantum Monte Carlo techniques

and parameterizing the results for use in Density Functional Theory calcu-

lations. Chapter 6 studies the onset of 4kF correlations in the electron gas

as the interactions are changed. Then chapters 7, 8, and 9 present methods

for calculating the momentum resolved excitation energy of the electron gas

and explore the dynamical properties of the gas in terms of these excita-

tions. Finally chapter 10 introduces a series of recent experiments studying

the properties of the electron gas in one dimensional wires, finding both the

velocities of the excitations and a localization transition. Chapter 11 uses

methods and theories developed throughout the dissertation to understand

the phenomena observed in these experiments and to make quantitative com-

parison between our calculations and the experimentally observed quantities.
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Chapter 2

Experimental Realizations of

Quasi One Dimensional

Fermions
There is a long history of experimental attempts to observe the physics of

Luttinger Liquids. Although it is not possible to reduce the dimensionality

of a particular sample per se, the physics of a system can take on a reduced

dimensionality whenever the degrees of freedom in the various dimensions

become decoupled. For one dimensional samples this means that the particles

must maintain quantum coherence in the transverse directions while moving

in the other.

Attempts to create and observe such localization have been complicated

by two competing difficulties. The first of these is that for systems where

the effective mass of the particles is low, the kinetic effects dominate and

the signatures of one dimensional behavior become very small corrections to

the dominant free particle behavior. Conversely when the interactions are

much stronger than the kinetic contributions the effect of impurities domi-

nates often leading to Coulomb Blockade physics where the charging of the

impurity suppresses tunneling in the experiment[15]. Therefore many of the

most successful experiments have focused on systems where extremely clean

samples can be prepared and the electrons have a relatively high degree of

mobility. This chapter will catalog some of the most important experimental

tests of one dimensional phenomena.

2.1 Quantum Hall Edge States

The edges of two dimensional electron gas in a high magnetic field exhibit

some strikingly one dimensional features. In fact a seminal work by X.-G.

Wen proposed that these edge states would behave as a chiral Luttinger Liq-

uid (CLL) [16]. Physically the reason for this chirality is straightforward, the

large magnetic field in the plane of the electron gas causes the two directions

of procession to have vastly different energy scales. Functionally this CLL
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shares many of the properties of the traditional LL, including spin charge

separation and the power law decay of the occupation at the Fermi level

(Eq. 1.4) [17].

One of the most influential observations of a CLL was made by Grayson

et al. who observed the tunneling of electrons from a metal into the CLL [18].

This experiment allowed the observation of a power law suppression of the

tunneling current at low voltages which is a hallmark of LL’s. Also influential

in this field is an experiment by Roddaro et al. which measured the tunneling

of fractionally charged quasiparticles between two different quantum Hall

Edge States, finding a direct correspondence between this behavior and that

predicted for backscattering of electrons in a conventional LL [19].

2.2 Carbon Nanotubes

Carbon nanotubes also provide a useful laboratory in which to observe one

dimensional physics. Depending on the coordination, these tubes may either

be conducting or insulating [20]. In the case of conducting nanotubes two

bands cross the Fermi level in each direction, so they can be viewed as having

two different species of fermions roughly corresponding to electrons propa-

gating clockwise and counterclockwise. Despite this complication, electrons

in nanotubes exhibit many properties of a LL.

There has been a large amount of interest in carbon nanotubes both

theoretically and experimentally. Experimentally Yao et al. were able to

probe the conductance of a nanotube with a kink, finding that the tunneling

current between the legs obeys a power law as a function of the temperature

with an exponent close to that predicted by Luttinger liquid theory [21].

Experiments on bundles of nanotubes have also shown similar properties [22].

Of primary interest to this work there has been recent experimental evidence

of a Wigner Crystal formed in a carbon nanotube,[23] which is analogous to

the localized electrons found in semiconductor devices. This localization is

discussed in chapter 10.
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2.3 Ultra Cold Atoms

A relatively new method for studying one dimensional physics has been re-

alized in ultra cold trapped atoms. In this case the atoms can be confined to

one dimension by utilizing standing waves formed by lasers. This creates an

array of elongated traps or“tubes” in which the atoms can interact. Much

interest has been focused on Bose gases where the use of Fano-Feshbach res-

onances has allowed the s-wave scattering characterizing contact interactions

to be tuned.[24, 25, 26] For these short range interactions, the “tubes” behave

as if they were isolated and one dimensional. When the interparticle interac-

tion becomes very strong and repulsive the bosons actually fermionize, acting

as a gas of noninteracting fermions.[27, 28] This phenomenon was originally

predicted by Tonks and Girardeau.[29] A similar phenomenon was proposed

by Fogler termed the coulomb Tonks gas[30, 31] for interacting fermions in

which the short range repulsion prevents exchange of electrons but at longer

ranges the tail of the potential still has a significant effect. This prediction

will be discussed in chapter 9. Finally recent theoretical proposals indicate

that Luttinger Liquid behavior should be observable using currently available

techniques in an ultracold 6Li [32].

2.4 Semiconductors

The search for one dimensional physics in semiconductor quantum wires has

a long and diverse history. Here two primary difficulties arise: firstly it is

difficult to create a one dimensional trap for the electrons without impurities

spoiling the physics and secondly it is difficult to observe the properties of the

wires once they have been made. The first problem has been addressed in a

variety of ways with one of the most successful being the development of the

cleaved edge overgrowth technique [33]. In this method a one dimensional

electron gas is created by making a wire at the edge of a two dimensional

electron gas. Here a two dimensional electron gas is created by growing two

atomically smooth layers of a semiconductor (in this case GaAs and AlGaAs)

that have a mismatched band gap. Then this sample is cut perpendicular to

the electron gas and another semiconductor layer is grown on the top, forming

a “t” like structure. Stated simply, the wave function can spread out more at

the junction, reducing the kinetic energy with little corresponding increase
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in potential energy. This effect is responsible for the formation of a bound

state running along the line defined by the intersection of the two planes.

This process and the sample geometry is depicted in Fig. 2.1.

Figure 2.1: Molecular Beam Epitaxy growth sequence for fabricating quan-
tum wires. The technique is called cleaved edge overgrowth. Figure is from
Schuster et al.[34]

The observation of one dimensional physics in semiconductors has re-

cently been greatly improved by a technique of momentum resolved tunnel-

ing between two quantum wires[35, 36, 37, 38, 39, 40, 41]. We will study this

further and provide several comparisons between theory and experiment in

chapters 10 and 11.
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Chapter 3

A Model For Quasi One

Dimensional Semiconductor

Wires
This chapter develops a model for electrons confined to one dimension in

semiconductors. This model will be used extensively throughout the rest

of this work to perform numerical calculations. It consists of three dimen-

sional electrons constrained to a wire by means of a harmonic confinement

potential. This model we use was developed elsewhere in the literature and

has been used extensively in the study of the quasi one dimensional electron

gas.[42, 43, 44]. Throughout this and subsequent chapters we will use units

of the effective Bohr radius (a⋆
0 = ~

2ǫ
m⋆e2 ) for length and the effective Rydberg

(Ryd⋆ = e2

2ǫa⋆
0

) for energy where ǫ is the dielectric constant of the embedding

medium and m⋆ is the effective electron mass. In a typical GaAs quantum

wire, ǫ = 13.1, m⋆ = 0.067me, and a⋆
0 ≈ 10nm. The density of the electron

gas is given in terms of the Wigner-Seitz radius (n = 1
2rs

) which is a param-

eter measuring the radius of the n-dimensional sphere enclosing on average

one electron.

3.1 Quasi 1D Electrons with Harmonic

Confinement

For the purposes of our study, three dimensional electrons interact via the

standard coulomb potential. These are then confined to a one dimensional

wire by means of harmonic confinement potential that is constant along the

wire, but increases as the square of the electron’s distance from the wire.

Vext(x, y, z) =
y2 + z2

4b4
(3.1)

Here b is a parameter that tunes the strength of the confinement poten-

tial. The electrons are assumed to be in the ground state of this transverse
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confinement potential, leading to a wavefunction of the form

Ψ(x, y, z) =
1

(2πb2)
1

4

e−
y2

+z2

4b2 Ψ(x) (3.2)

Henceforth b controls the width of the wire with larger b’s corresponding to

wider wires and smaller b’s corresponding to thinner wires.

If the density of the electrons in the wire is low enough, the degrees of

freedom along the wire have a much lower energy scale than the transverse

modes. This is the case when the Fermi energy of noninteracting one dimen-

sional electrons is much less than the difference between the ground state and

first excited state energy of the two dimensional harmonic oscillator defined

by the potential in Eq. 3.1. This relation yields:

rs ≫
πb

4
. (3.3)

Integrating out these transverse degrees of freedom yields one dimensional

electrons interacting via an effective potential:

Vb(x) =

∫ ∫

d~rd~r ′ ρb(~r)ρb(~r
′)

√

(~r − ~r ′)2 + x2

=

√
π

b
exp

(

x2

4b2

)

erfc

( |x|
2b

)

(3.4)

where ~r and ~r′ are the transverse vectors and ρb(~r) = 1
b
√

2π
exp

(

− r2

2b2

)

is the

ground state charge distribution of a two dimensional harmonic oscillator

with the wire’s confining potential: Vwire(r) = r2

4b4
. This potential is finite at

the origin with a value determined by the width of the wire (Vb(0) =
√
π/b)

and it decays as 1/r at long range.

3.2 Periodic Boundary Conditions

Much of this work is concerned with properties of the electron gas in the ther-

modynamic limit, so in order to reduce finite size effects periodic boundary

conditions for the wavefunction are used extensively throughout. Effectively

this means that an electron interacts with the other electrons in the cell, their

periodic images, its own images and a positive background that is introduced

to preserve charge neutrality. For this reason it is useful to create an effective
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pair potential that sums the interaction of an electron with another electron

located x away from the first, all of that electron’s images and the positive

background. This produces a periodic function:

V (x) =
∑

n

[

Vb(x+ nL) − 1

L

∫ L/2

−L/2

dyVb(x+ nL+ y)

]

(3.5)

where L = 2Nrs is the size of the simulation cell for N electrons at density

rs. The above potential can be Fourier transformed to give

Ṽ (Gn) =
1

L

∑

n

V (nδx)eiGnk (3.6)

where the summation is finite because of the periodicity of the simulation

cell and Gn = 2πn/L is a reciprocal lattice vector of the 1D Bravais lattice

with δx = L
2N

. Here

Ṽb(k) = 2E1(b
2k2) exp(b2k2) (3.7)

is the Fourier transform of the bare pair potential Vb(x) given in Eq. 3.4, and

E1 is the exponential integral function.

The bare interparticle is long range and because of this the summation in

Eq. 3.5 converges only conditionally. In order to evaluate this potential we

utilize an Ewald-like method [45]. This approach divides the potential into

short and long range pieces. The short range piece is then summed in real

space while the long range part is handled in reciprocal space. Specifically,

V (x) = Vsr(x) + Vlr(x), (3.8)

Vsr(x) =

√
π

b

∞
∑

−∞
exp

[

(x− nL)2

4b2

]

erfc

( |x− nL|
2b

)

−
∞
∑

−∞

2

|x− nL| erf

( |x− nL|
2b

)

(3.9)

Vlr(x) = 2
∑

n>0

cos(Gnx)

L
e−(bGn)2Ṽb(Gn). (3.10)
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Using this notation, the final Hamiltonian is

H = −
N
∑

i=1

∇2
i +

∑

i<j

V (|xi − xj |) +
N

2
(V (0) − Vb(0)) (3.11)

where N
2
(V (0) − Vb(0)) is the Madelung energy which corresponds to the

interaction of the particles with their own images.

3.3 Screening

Experimentally quantum wires are often fabricated in the presence of exter-

nal metallic gates which are used to control the wire. These gates screen the

interaction of the electrons at large distances, resulting in a shorter range

potential. The form of this potential can be found assuming that the gate

is placed parallel to the wire and it is perfectly conducting. In this approxi-

mation the potential between two electrons on the wire can be found via the

electrostatic method of images[46], whereby electrons in the quantum wire

induce image charges of equal and opposite sign in the gate located twice as

far from the wire as the gate. This geometry is shown in Fig. 3.1 as compared

to the unscreened interaction.

The equation for this potential is

Vb,R(x) =

∫ ∫

d~rd~r ′ ρb(~r)ρb(~r
′)

√

(~r − ~r ′)2 + x2
−

∫ ∫

d~rd~r ′ ρb(~r)ρb(~r
′)

√

(~r − ~r ′ − 2~R)2 + x2

= Vb(x) − Vint(x,R) (3.12)

where ~r and ~r ′ are transverse vectors, ρb(~r) = 1
b
√

2π
exp

(

− r2

2b2

)

is the ground

state charge distribution of a two dimensional harmonic oscillator with the

wire’s confining potential: Vwire(r) = r2

4b4
. The first integral gives the ef-

fective unscreened inter-particle potential Vb(x) described in the previous

section and the second one is the potential due to the image charge on the

screening wire: Vint(x,R). Note that this is only one type of screening that

may be present in the system and that in general screening from the closest

source dominates the form of the interaction. Another screened interaction
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Figure 3.1: Schematic of the interaction in quantum wires. On the left
the unscreened interaction with two electrons confined to a wire of width b
interact. The right hand side introduces a metallic gate parallel to the wire
a distance R away. The electron on the right hand side feels the repulsion
from its neighbor and also from the image charge induced in the gate.

involving the electrons in a real wire parallel to the first one will be discussed

in Sec. 11.1

In contrast to the unscreened interaction which decays like 1/x at long

range, the interaction screened by a semi infinite metallic gate behaves as

V (x) = 4R2/x3 as x → ∞. This means that instead of the Ewald-like pro-

cedure of section 3.2, this interaction may be summed directly. As a practi-

cal consideration, the terms in the asymptotic expansion of the summation

V (x) =
∑

n Vb,R(x+ n2Nrs) can be summed analytically

lim
n→∞

∞
∑

i=n

Vb,R(x+ i2Nrs) =
2R2ψ2(n− x

2Nrs
)

(2Nrs)3
(3.13)

where ψ2(x) is the second order polygamma function. So the total interaction

is calculated by summing several terms in the interaction and this long range
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form:

V (x) = Vsr(x) + Vlr(x)

V (x) = Vb,R(x) +

m−1
∑

n=1

Vb,R(x+ 2Nrs) +

1−m
∑

n=−1

Vb,R(x+ 2Nrs)

+
2R2ψ2(m− x

2Nrs
)

(2Nrs)3
+

2R2ψ2(−m+ x
2Nrs

)

(2Nrs)3
(3.14)
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Chapter 4

Calculating Ground State

Properties via QMC

Although there have been many great advances in the study of the one di-

mensional electron gas via analytical methods, it is still not possible to make

quantitatively accurate calculations of many of the properties of the electron

gas via analytical means. There are however several numerical methods for

performing calculations of these properties. When the single particle states

of the system can be described via a relatively small set of basis functions,

as is the case for many model systems, it is possible to exactly diagonalize

the many body problem via methods such as Lanczos when the number of

particles is small[47, 48, 49]. In one dimension larger systems may be treated

via the density matrix renormalization group algorithm[50].

In the case of a continuous Hamiltonian, a slightly different approach

is necessary. Density Functional Theory is a natural choice for such cases

because of its small computational cost and ability to treat complicated ge-

ometries and potentials with ease. Unfortunately the typical functionals used

to determine the correlation energy in such calculations are not suitable for

one dimensional systems as they are derived for a three dimensional electron

gas. Following the work of Casula et. al.[43], there have been DFT calcu-

lations of quantum wires which use QMC calculations of the energy of the

quasi one dimensional electron gas as a reference [51]. This work suggests

the need for a spin dependent energy functional, a functional we endeavor to

create in chapter 5 using the methods developed in this chapter.

In this case, the quantum Monte Carlo method allows the ground state

properties of the electron gas to be calculated with no uncontrolled approxi-

mations and with a relatively modest computational cost. In one dimension,

the computational cost of the QMC calculations performed in this work scales

as the square of the number of electrons, with further refinements possibly

allowing even better scaling. This chapter will provide a detailed description

of the quantum Monte Carlo method as it is applied to the study of the
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ground state properties of the one dimensional electron gas.

4.1 Quantum Monte Carlo Methods

Quantum Monte Carlo (QMC) is an extraordinarily powerful tool for calcu-

lating the properties of many body systems. This section will endeavor to

present a general introduction to the QMC methods used to calculate the

properties of the ground state of the one dimensional electron gas.

4.1.1 Variational Monte Carlo

The Variational Monte Carlo method can be used to calculate matrix ele-

ments of a complicated wave function whose evaluation would be extraor-

dinarily costly via conventional means. These matrix elements are typically

written as ND dimensional integrals where N is the number of electrons and

D is the dimensionality of the space. If these integrals are approximated

using a grid-based method, the computational cost will scale with the size of

the grid. For the simple case of a uniform grid with M points per dimension

this cost is of the order MND, which is too large for all but the smallest

numbers of electrons. Monte Carlo techniques allow the evaluation of these

ND dimensional integrals with a cost that scales only as the square root of

the number of dimensions, making these methods much more suitable for

these problems.

Variational Monte Carlo uses the Monte Carlo method to calculate the

matrix element of a particular observable Ô with a known trial wavefunction

Ψ. Specifically,
〈

Ô
〉

=

∫

Ψ⋆(R)O(R)Ψ(R)dR
∫

Ψ⋆(R)Ψ(R)dR
(4.1)

where R are the N spatial coordinates of the particles. This integral is

rewritten so that the coordinates are sampled according to the square of the

trial wave function Ψ:

〈

Ô
〉

=

∫

|Ψ(R)|2 ÔΨ(R)
Ψ(R)

dR
∫

|Ψ(R)|2 dR
. (4.2)

Now all that is needed is an algorithm to sample these coordinates R. The

coordinates are chosen via the Metropolis algorithm[52]. This algorithm is
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a method of drawing samples from an arbitrary probability distribution. It

accomplishes this by creating a Markov chain, which is a random walk that

samples the appropriate distribution after an equilibration phase. A sufficient

condition for any such Markov chain to have equilibrated is that the rate at

which a walker moves from R to another point R′ is equal to the rate at

which walkers move from R′ back to R.

In order to accomplish this, the probability of making a given move is

then broken into two parts. The first is a probability distribution from

which trial moves are taken (Ptrial) and the second is the probability that

these trial moves are accepted (Paccept). Typically the distribution of trial

moves is taken to be something simple like a constant probability inside of

a hypercube around the initial configuration or a Gaussian centered around

the previous location, although in principle it should be chosen to minimize

the autocorrelation of the quantity being observed (Ô in Eq.4.1) between

subsequent samples. The acceptance probability then is chosen so that the

total probability of making a move is

P (R → R′) = Ptrial(R → R′)Paccept(R → R′). (4.3)

In order for the system to have an equilibrium distribution of Ψ2, a sufficient

condition is

Ψ2(R)P (R → R′) = Ψ2(R′)P (R′ → R), (4.4)

which is known as detailed balance and requires that the flux from one con-

figuration to another is equal to the flux in the opposite direction.

The Metropolis algorithm uses this condition to determine the acceptance

probability

Paccept(R → R′) = min

(

1,
Ptrial(R

′ → R)Ψ2
trial(R

′)

Ptrial(R → R′)Ψ2
trial(R)

)

. (4.5)

Finally the matrix element is computed as the average over these configura-

tions of the following quantity

〈

Ô
〉

=
1

N

∑

R

ÔΨtrial(R)

Ψtrial(R)
. (4.6)

It is thus vitally important to choose a good approximation to the true
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many body wavefunction whenever these VMC calculations are performed.

4.1.2 Trial Wave Function

As a starting point, we choose a simple wavefunction that maintains the

translational invariance of the system as well as the antisymmetry of the

fermions. Additionally we include a two body term that correlates the behav-

ior of the electrons at both short and long range. This is the Slater-Jastrow

wave function

ΨT = D↑D↓ exp

(

−
∑

i<j

u(xij)

)

, (4.7)

where each determinant Dσ is the antisymmetrized product of Nσ plane

waves occupied up to the Fermi momentum for that species:

kF =
π(1 ± ζ)

4rs
(4.8)

with ζ = (N↑ − N↓)/Ntot where the plus is for the majority spin species

and the minus the minority. As a technical point, a general antisymmetrized

product of these Nσ orbitals may be calculated in O(N3) operations. In one

dimension with a filled Fermi sea of states, this determinant can be written

as a Van der Monde determinant, which can be calculated in only O(N2)

operations:

Dσ(xσ
1 , . . . , x

σ
Nσ) =

∏

1≤i<j≤Nσ

sin

(

G

2
(xσ

i − xσ
j )

)

, (4.9)

with G = 2π/L, and L = 2rsN the length of the simulation cell. Further

simplifications to reduce the complexity of this calculation are possible.

We follow Ref. [53] to determine the Jastrow function u(x). Its Fourier

components are

2ρũ(k) = −S0(k)
−1 +

√

S0(k)−2 +
Ṽb(k)

2rsk2
(4.10)

with S0(k) = (k/2kF )θ(2kF−k)+θ(k−2kF ) the structure factor of a noninter-

acting 1DEG, ρ = 1
2rs

the density, and Ṽb(k) the Fourier transform of Vb(x).

This Jastrow function is repulsive at short range to produce a wavefunction
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where the electrons are less likely to approach each other. This Jastrow also

includes the proper long wavelength correlations from the Random Phase

Approximation. More elaborate Jastrow functions have been tried for this

system, but a simple rescaling of the Jastrow in Eq. 4.10 was found to have

very similar properties for less computational overhead.[43]

4.1.3 Diffusion Monte Carlo

The diffusion Monte Carlo (DMC) algorithm allows matrix elements of the

ground state of the many body Schrödinger equation to be calculated with

less dependence on the trial wavefunction than the VMC method.[54, 55,

56] The DMC algorithm works by considering the Schrödinger equation in

imaginary time.
∂ |ψ〉
∂τ

= −Ĥ |ψ〉 (4.11)

which has the solution

|ψ(τ)〉 = e−τĤ |ψ(0)〉 > (4.12)

Any wavefunction |Ψ〉 can be expanded in terms of the eigenstates of Ĥ :

|Ψ〉 =
∑

i ai |φi〉. Substituting this into Eq. 4.12, it is plain that as τ becomes

large, all higher excited states are exponentially suppressed

lim
τ→∞

|ψ(τ)〉 = c0e
−ǫ0τ |ψ0〉 . (4.13)

In light of this we rewrite the imaginary time Schrödinger equation in first

quantized form with an arbitrary energy offset:

1

2
∇2ψ(R, τ) + [ET − V (R)]ψ(R, τ) =

∂ψ(R, τ)

∂τ
. (4.14)

This has the form of an N dimensional diffusion equation where the wave-

function takes the place of the density of the particles. Following Reynolds et

al. [54] this can be transformed into an importance sampled integral equation

f(R, τ) =

∫

G(R,R′; τ ′)f(R′, τ))dR′ (4.15)
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where f(R, τ + τ ′) = ψ(R, τ)ΨT (R) is a product of a known trial wavefunc-

tion ΨT and the eigenfunction ψ.[54, 57] G(R,R′; τ) is the Green’s function

for

1

2
∇2f(R, τ) + ∇ · [∇ ln |ΨT (R)| f(R, τ)]

+

[

ET − ĤΨT (R)

ΨT (R)

]

f(R, τ) =
∂f(R, τ)

∂τ
. (4.16)

The importance sampling has two main roles. The first is to greatly

increase the efficiency of the sampling if the trial wavefunction is reasonable.

The second role is to allow the simulation of fermionic systems by imposing

boundary conditions on the diffusion process. The true ground state of the

system is assumed to have the same nodes as the trial wavefunction, thereby

preventing a collapse to the bosonic ground state. This approximation and

its effects will be further discussed in Section 4.1.5

The task now is to calculate this Green’s function. Introducing the drift

velocity vD(R) = ∇ ln |ΨT (R)|2, the Green’s function for a diffusion process

with no potential is known:

Gdiff(R,R′; τ) =
1

(2πτ)N/2
exp

(

−(R− R′ − τvD(R′))2

2τ

)

. (4.17)

The part of Eq. 4.16 involving the potential and the trial energy is just a

rate equation whose Green’s function is approximated by

Grate(R,R
′; τ) = exp

(

−τ EL(R) + EL(R′) − 2ET

2

)

(4.18)

where

EL(R) = ĤΨT (R)/ΨT (R). (4.19)

The full Green’s function can now be approximated in the limit of a small

time-step τ using the Trotter-Suzuki formula [58, 59]

G(R,R′; τ) = Gdiff(R,R′; τ)Grate(R,R
′; τ). (4.20)

Configurations can be sampled from this Green’s function by using drift
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diffusion dynamics

R′ = R + τvD(R) + χ
√

2τ (4.21)

where χ is a normally distributed Gaussian random variable and a proposed

move to R′ is accepted with probability

Paccept(R → R′) = min

(

1,
G(R,R′; τ)ΨT (R)2

G(R′,R; τ)ΨT (R′)2

)

, (4.22)

a step that is only necessary because of the approximate Green’s function G.

Note that as τ → 0, the acceptance probability goes to 1.

4.1.4 Lattice Regularized Diffusion Monte Carlo

We also make extensive use of the lattice regularized diffusion Monte Carlo

(LRDMC) algorithm in this work. This section will follow the discussion

of LRDMC in Casula et al. [43]. The LRDMC method was originally in-

troduced to eliminate the localization error with nonlocal pseudopotentials

[60]. LRDMC operates on a regularized Hamiltonian in a way that the Green

function Monte Carlo (GFMC) algorithm on a lattice can be applied to con-

tinuous systems [61, 62, 63].

Regularization of the Hamiltonian involves separate approaches for both

the potential and the kinetic terms. Firstly, the Laplacian is discretized using

a finite difference approximation

∆ = ν
[

p∆a + (1 − p)∆a′
]

+O(a2) (4.23)

where ∆a is a Hermitian operator having the action

∆aψ(xi) =
1

a2
(ψ(xi + a) + ψ(xi − a) − 2ψ(xi)) (4.24)

with a being the size of the finite difference mesh and p being a constant

that sets the relative importance of the two meshes a and a′. In general, p

can vary spatially, a freedom that is not exploited in homogeneous systems.

The different lattice spacings a and a′ are chosen to be incommensurate so

that the random walk may sample all of the continuous configuration space.

In this way, the bias due to the discretization of the continuous operator is

greatly reduced.
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The second step in the lattice regularization involves the potential. The

potential is regularized subject to three constraints: i) the final Hamiltonian

Ha becomes equal to the continuous Hamiltonian H when the lattice spacing

a → 0; ii) given the trial wave function ΨT , for any lattice spacing a and

configuration R the local energy (Eq.4.19) of the discretized Hamiltonian is

equal to that of the continuous Hamiltonian; and iii) The discretized kinetic

energy is equal to the continuous kinetic energy when calculated on the state

ΨT . Condition (iii) fixes the constant ν, while the condition (ii) constrains

the form of the regularized potential V a:

V a(R) = V (R) +
1

2

[∑

i(∆
a
i − ∆i)ΨT

ΨT

]

(R). (4.25)

The condition (ii) yields another important property for Ha: if ΨT is an

eigenstate of H , it is also an eigenstate of Ha for any a. Thus, as the quality

of ΨT increases the dependence of the LRDMC energy on a decreases.

The lattice regularized Hamiltonian Ha reads:

Ha
R′,R =











−ν p/a2 if R′ = R + δa

−ν (1 − p)/a′2 if R′ = R + δa′

2Nν
(

p
a2 + 1−p

a′2

)

+ V a(R) if R′ = R,

(4.26)

where δa (δa′) is a N dimensional vector composed of one particle displace-

ments of length ±a (±a′). This means that there are 2N possible δa (δa′)

and the lattice discretized Hamiltonian contains 4N off diagonal elements.

Thus when defining the importance sampled Green’s function

GR′,R = ΨT (R′)
ΛδR′,R −HR′,R

ΨT (R)
, (4.27)

a configuration R is connected only to a finite number of R′. This property

allows the now discrete Green’s function to be sampled using the heat bath

algorithm just as in the standard GFMC scheme[61, 62, 63]. It is also neces-

sary to take the limit Λ → ∞ because Hamiltonian Ha is not bounded from

above.
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4.1.5 Fixed-Node Approximation

In both the DMC and LRDMC methods there is a problem that is introduced

by interpreting the imaginary-time Schrödinger equation as a diffusion equa-

tion. This procedure rests on interpreting the wavefunction as a probability

density for Monte Carlo sampling. The difficulty comes because a probability

density must be strictly nonnegative, which is manifestly not the case for a

many body fermion wavefunction.

The first approach to this problem was proposed by Anderson [64]. He

used a trial wavefunction as reference and killed any walker that made a move

that crossed the node of that wavefunction. This solution imposes boundary

conditions on the nodal pockets of the wavefunction. This is a variational

approximation, yielding an upper bound on the ground state energy for any

choice of trial wavefunction [65].

It was later found that in addition to the bias caused because the nodes of

the trial wavefunction are not the same as the nodes of the true ground state

wavefunction, Anderson’s approximation caused a bias that was proportional

to the time step used in the calculation [55]. This bias can be reduced by

simply rejecting any move that crosses the nodes of the trial wavefunction.

This is the approach that is employed in our calculations. In DMC this

is a straightforward method to apply, while a somewhat subtle nuance is

introduced in LRDMC. For LRDMC, the heat bath algorithm is affected by

effectively removing any configurations that lead to the crossing of the nodes.

This can be remedied by including their contributions in the term which has

the walker remain in its current position. To wit, the effective fixed node

Hamiltonian becomes

Heff
R,R′ =















Ha
R,R′ if R 6= R′ and

ΨT (R′)Ha
R,R′

ΨT (R)
≤ 0

0 if R 6= R′ and
ΨT (R′)Ha

R,R′

ΨT (R)
> 0

Ha
R,R + Vsf(R) if R = R′,

(4.28)

where Vsf(R) =
∑

R′ 6=R

ΨT (R′)Ha
R′,R

ΨT (R)
> 0, the so called sign-flip term, is the

sum over all the terms that cause a negative sign problem in the Monte Carlo

sampling [60].

Fortunately, in one dimension, the nodes of the ground state wavefunction

are known exactly. This is possible because in one dimension the nodal
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structure of the ground state is exactly defined by the coalescence planes

xi = xj , where xi and xj are the coordinates of electrons with the same

spin. Thus the nodes of the wavefunction are completely determined by the

antisymmetry of the particles [66]. This property allows the ground state

properties of the 1D electron gas to be calculated exactly within DMC.

4.1.6 Mixed Estimators and Forward Walking

For operators that do not commute with the Hamiltonian both the LRDMC

and DMC methods suffer from the so called mixed estimator bias. This means

that if the configurations are simply sampled from the mixed distribution

ΨT (R)φ(R), and an observable that does not commute with the Hamiltonian

is calculated at these configurations, then there will be a bias because the

matrix element calculated is:

〈ΨT | Ô |ψ0〉
〈ΨT |φ0〉

(4.29)

instead of the desired matrix element

〈φ0| Ô |φ0〉
〈φ0|φ0〉

(4.30)

This bias may be eliminated by using the forward walking algorithm.[67,

62] The algorithm consists of using the Green’s function to propagate the trial

wave function on both sides of the matrix element. This is accomplished by

using the standard DMC or LRDMC technique to generate a sequence of

configurations distributed as ΨTφ0. Then the observable is calculated using

a configuration at time t, but with the product of the weighting factors from

t′ iterations previous W (t, t′) =
∏t

i=t−t′ wi rather than simply the weight of

the walker at the current time. Therefore the final observable is calculated

as
〈φ0| Ô |φ0〉
〈φ0|φ0〉

=
∑

l,t

W (t, t′)O(Rl, t)

W (t, t′)
(4.31)

where O(Rl, t) is the value of the observable calculated for walker l at imag-

inary time t with the trial wavefunction. This algorithm is limited because

the variance of weight term W (t, t′) diverges in the large t′ limit. As such the

convergence of the quantity being considered must be monitored closely. An
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example of the convergence of a quantity under forward walking is presented

in Fig. 8.1.

4.1.7 Finite Population Bias

The population of walkers is controlled via stochastic reconfiguration. Pe-

riodically a new population of walkers is chosen randomly from the current

population where a walker’s chance of being selected is proportional to its

relative weight. These new walkers are all taken to have a weight of 1. It

is necessary to implement the Grate term with a fixed number of walkers be-

cause without any sort of population control, the variance of the weights of

the walkers will become infinite [68]. This bias is eliminated by using the

forward walking algorithm presented in section 4.1.6.

4.2 Comparison of LRDMC and DMC

A peculiar difficulty of one dimensional simulations makes the exchange of

electrons exponentially unlikely as the strength of the interaction increases.

This origin of this difficulty is due to the Jastrow factor which makes the

approach of two electrons unlikely.

If the spin configurations are not accurately sampled the Markov chain

is not ergodic and the Monte Carlo calculation is no longer exact for the

spin properties of the system. Fortunately the energy of the spin degrees of

freedom is exponentially small at low density, so the approximation is small

in the calculation of total energies.

LRDMC is better suited to sample the spin degrees of freedom for two

reasons. The first is that the drift term in DMC enhances the effect of

the pseudo nodes by pushing particles away from their neighbors whenever

they become close. To understand the second it is first necessary to note

that the time step controls the diffusion constant in the simulation which in

turn controls the exchange rate. As shown in Fig. 4.1, for a given diffusion

constant LRDMC has a much smaller error in the energy than DMC. Because

of this, for a given tolerated error in the energy, the LRDMC has a larger

diffusion constant and thus a much larger exchange rate. This increased

ergodicity does not spoil the spin properties of the system for moderate lattice

spaces as confirmed by the agreement between the LRDMC and WKB spin
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susceptibilities at moderate density in Fig. 9.3.
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Figure 4.1: DMC and LRDMC energies for 22 electrons with rs = 1 and
b = 0.1. The time-step is chosen so that the diffusion constant is the same
between the DMC and LRDMC simulations, namely 2τ = a2 where τ is the
DMC time-step and a is the LRDMC lattice space

In Fig. 4.2, the exchange rate is plotted as a function of the density.

Although for higher densities the exchange rates are quite similar, at low

density the exchange rate is nearly two orders of magnitude higher in LRDMC

than DMC.

4.3 Finite Size Corrections

In order to determine the energies in the thermodynamic limit, it is necessary

to understand how the energy is affected by the size of the system. There are

three different terms in the finite size correction used in this work. The first

is a one body term due to the incomplete sampling of the kinetic energy. The

other two terms are due the sampling of the long range part of the structure

factor. The discussion in this section follows the notation of Chiesa et al.

[69].
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Figure 4.2: Exchange frequency for DMC and LRDMC computed with 22
electrons for several densities.

4.3.1 One Body Corrections

An approximation is made in calculating the kinetic energy using a finite

simulation cell. This error is due to the quantization of momentum in a

finite size calculation. To understand this error the kinetic energy can be

written in terms of the momentum distribution

T =
∑

G

nN(G)G2 (4.32)

where nN is the momentum distribution of N electrons. Assuming nN = n∞

(the momentum distribution in the thermodynamic limit) as the system size

grows, the allowed momenta G become more closely spaced and this sum

approaches an integral. This error is familiar from mean field calculations

where it is necessary to integrate over k points to sample the Brillouin zone.

The error made by using a finite number of electrons can now be calculated

using the twist averaging method [70]. However in 1D, this may be calculated
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directly assuming the effective mass of the electrons is one:

∆T =

∫ kF

−kF

k2d k −
∑

G

G2 (4.33)

where kF = π
4rs

is the Fermi momentum of the unpolarized electron gas in

the thermodynamic limit and T is the kinetic energy. This correction scales

as c/N2 as the number of electrons in the system N changes where c is a

density dependent constant. A more difficult problem arises from the change

in nN as N increases, a many body effect due to electron correlations which

is discussed in the next section.

4.3.2 Two Body Corrections

There exist additional many body finite size effects that come from the long

wavelength correlations in the electron gas. In this work we use finite size

correction by Chiesa et al. to calculate the effect on the energy of these long

range correlations [69]. In order to calculate these finite size effects, they

notice that in a finite size simulation, it is only possible to determine the

static structure factor on a finite grid of points given by the reciprocal lattice

vectors. They note the majority of the error due to long range correlations

comes from the incomplete sampling of the long wavelength portion of the

structure factor (k → 0).

Fortunately, the long wavelength behavior of the electron gas is known

analytically within the random phase approximation (RPA). Within this ap-

proximation the ground state of the system is described by a collection of

dressed particles interacting via short range forces and also plasmon collective

excitations. In this case the many-body wave function factorizes as

Ψ = Ψsr exp

[

− 1

2Ω

∑

G 6=0

uGρGρ
†
G

]

, (4.34)

where Ψsr contains only short range correlations and uG decays quickly to 0

as G increases [71]. Using this knowledge, it is possible to write the difference

between the kinetic and potential energy calculated for a finite size simulation
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cell and the infinite limit:

∆B =
1

4π

∫ ∞

−∞
V (k)S(k)dk − 1

2Ω

∞
∑

i=1

v(ki)S(ki) (4.35)

∆T = − 1

4π

∫ ∞

−∞
k2u(k)(S(k) − 1) +

1

2Ω

∞
∑

i=1

k2
i u(ki)(S(k) − 1) (4.36)

where V (k) is the Fourier transform of the interparticle potential and

ũ(k) = −rsS0(k)
−1 +

√

S0(k)−2 +
Ṽb(k)

2rsk2
(4.37)

as per the Mean Spherical Approximation (MSA) which becomes equal to

the RPA at small k [72]. These corrections both scale as

∆U ∝ ∆T ∝
√

lnN

N
(4.38)

with system size N which is slower than the one body contributions.

In Fig. 4.3 calculations of the total energy have been performed for several

different values of rs and several different numbers of electrons. In addition,

the finite size corrections in Eq. 4.33, Eq. 4.36 and Eq. 4.35 are applied for

each number of electrons. These results show that these finite size corrections

are quite accurate both for the high density regime where the one body kinetic

effects dominate and also for the low density regime where the long range

two body effects are the most important. The figures also include a fit of all

of the finite size corrections

E(N) = E0 +
c

N2
+
c2
√

lnN

N
(4.39)

to the data. The striking agreement between the energy E0 determined by

this fit and the energies calculated using the above corrections is a testament

to the power of the method of Chiesa et al. to calculate the finite size effects

without performing an expensive extrapolation.
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Figure 4.3: Scaling of the ground state energy per particle with number
of electrons in the simulation for several densities. The curve shows the
extrapolation using both the one body and many body corrections (E0 +
c

N2 + c2
√

ln N
N

) from Chiesa et al.[69]. The green points show the corrected
values based on the calculations and the straight horizontal line shows the
extrapolated value.
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Chapter 5

Correlation Energy and

Construction of an LSDA

Functional
In this chapter we will endeavor to provide an understanding of the proper-

ties of the ground state energy of the quasi one dimensional electron gas as

a function of density and spin polarization. This work is a natural extension

of that by Casula et. al. who studied the density dependence of the quasi-

one dimensional electron gas at zero spin polarization [43]. The chapter will

first catalog the theoretically known properties of the electron gas in various

limits. With the knowledge of these limits in hand, a careful series of calcula-

tions of the total energy of the ground state of the electron gas is undertaken

via means of QMC. Finally, a parameterization of this energy suitable for

use in DFT calculations is summarized with full details in appendix A.

5.1 Theoretical Constraints on the Total

Energy

One of the most powerful predictions about the behavior of the ground state

energy of the one dimensional electron gas is the Lieb-Mattis theorem[8].

This simple theorem states that in one dimension the total energy of a system

of fermions must be a strictly increasing function of the spin polarization.

This theorem precludes the existence of a Bloch instability such as that

predicted by an STLS-like theory of the total energy due to Calmels and

Gold [73, 74].

This section will also present the theoretical dependence of the total en-

ergy on the density and spin polarization in several limits via means of the

random phase approximation (RPA) at high density and the mapping of the

spin degrees of freedom to the Heisenberg model at low density. In keeping
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with convention we separate the total energy into three parts:

ǫ = ǫt + ǫx + ǫc (5.1)

where ǫt is the kinetic energy of the noninteracting system, ǫx is the exchange

energy calculated for the noninteracting wavefunction and ǫc is the correla-

tion energy which includes corrections to both the potential energy and also

the kinetic energy due to the interactions. The first two terms are known

analytically, with the simplest being the kinetic energy which is

ǫt =
π2(1 + 3ζ2)

48r2
s

, (5.2)

where rs is the familiar Wigner-Seitz radius and ζ = (N↑−N↓)/Ntot measures

the spin polarization of the electron gas. The exchange energy is also known

analytically:

ǫx =
1 + ζ

2b

∫ 2k↑
F

0

dk Ṽb(k)(1−S0(k, k
↑
F ))+

1 − ζ

2b

∫ 2k↓
F

0

dk Ṽb(k)(1−S0(k, k
↓
F ))

(5.3)

where S0(k, kF ) is the static structure factor of a noninteracting electron gas

with Fermi momentum kF :

S0(k, kF ) = θ(k − 2kF )
k

2kF
+ θ(2kF − k) (5.4)

where θ is the step function:

θ(x) =

{

1 if x < 0

0 if x ≥ 0.
(5.5)

The next two sections will be concerned with finding the behavior of the

correlation energy at both high and low densities.

5.1.1 High Density Correlation Energy

The RPA is very successful in describing the energy of the one dimensional

electron gas at high density[73, 43]. Here we derive the fully spin dependent

RPA for the one dimensional electron gas with the effective interaction from

Eq. 3.4.
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In a previous work [43], it was shown that the correlation energy at the

lowest order in rs in the unpolarized wire is

ǫRPA
c (rs, ζ = 0) = − A

π4b2
r2
s , (5.6)

with A = b2
∫ +∞
0

dz z Ṽ 2
b (z) = 4.9348, where ζ measures the wire polariza-

tion.

This result turns out to be the same as a high density extrapolation of

the correlation energy for the same interaction studied here, obtained by

Gold and Calmels within the mean spherical approximation (MSA).[73] We

obtained the result in Eq. 5.6 starting from the general expression of the

RPA correlation energy[75]:

ǫRPA
c =

L

2π

∫ +∞

−∞
dk ǫ(k),

ǫ(k) =
1

4π

|k|
N

∫ +∞

−∞
dλ ln(1 − Ṽb(k)χ

0(k, ikλ))

+Ṽb(k)χ
0(k, ikλ), (5.7)

where Ṽb(k) is the Fourier transform of the potential, and χ0 is the real part

of the density-density response function for the free 1D electron gas. We

extend the previous work by computing the RPA correlation energy in the

presence of polarization, χ0 must include now the explicit contribution from

the two spin species:

χ0(k, ω) = χ0
↑(k, ω) + χ0

↓(k, ω)

χ0
σ(k, ω) =

1

4πk
ln

(

ω2 − (k2 − vσ
Fk)

2

ω2 − (k2 + vσ
Fk)

2

)

, (5.8)

with vσ
F the Fermi velocity of the σ (=↑, ↓) component. After some algebra,

and a change of variables (k = kF q,ω = ikF qvFu), Eq. 5.7 can be rewritten

at the leading order in rs as follows:

ǫRPA
c ≃ − 1

8(2π)3

∫ +∞

0

dq q Ṽ 2
b

(

q

αrs

)

∫ +∞

0

du(Q↑
q(u) +Q↓

q(u))
2, (5.9)
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with α = 4/π in 1D. The derivation reported in Ref. [43], follows the work of

Gell-Mann and Brueckner [76] in 3D, and Rajagopal and Kimball [77] in 2D.

The “propagator” Qσ
q (u) now depends on the spin polarization, and reads:

Qσ
q (u) =

∫ +∞

−∞
dk

∫ +∞

−∞
dt fσ(k)(1 − fσ(k + q))

e−ituq exp(−|t|(1
2
q2 + kq)), (5.10)

where f↑(x) = θ(|x|−(1+ζ)), f↓(x) = θ(|x|−(1−ζ)) are the zero temperature

Fermi distributions for the two spin components, θ being the step function.

In order to factor out explicitly the rs order dependence in Eq. 5.9 we

apply another change of variables (q → αrsq) and we integrate over u. After

these steps, the RPA correlation energy reads:

ǫRPA
c (rs, ζ) ≃ − 1

8(2π)3
(αrs)

2

∫ +∞

0

dz z Ṽ 2
b (z)

∑

σ,σ′

Fσ,σ′

(αrs

b
z, ζ
)

, (5.11)

where we have defined the set of functions:

Fσ,σ′(q, ζ) =
2π

q

∫ +∞

−∞
dk1fσ(k1)(1 − fσ(k1))

∫ +∞

−∞
dk2fσ′(k2)(1 − fσ′(k2))

1

q2 + q(k1 + k2)
, (5.12)

where the ζ dependence is included in the zero temperature Fermi distribu-

tions fσ(k). From the above equation it is apparent that F↓,↑ = F↑,↓.

For ζ = 1, F↑,↑(q, 1) 6= 0, while F↓,↓(q, 1) = F↑,↓(q, 1) = 0 ∀q. Therefore,

in the case of the fully polarized 1DEG, at the leading order in rs we obtain

:

ǫRPA
c (rs, 1) ≃ − 1

8(2π)3
(αrs)

2

∫ +∞

0

dz z Ṽ 2
b (z)F↑,↑(0, 1). (5.13)

Notice that we have performed the limit rs → 0 of F↑,↑
(

αrs

b
z, ζ
)

, and it is easy

to show that F↑,↑(0, 1) = π/2. Therefore, our fully polarized RPA correlation

energy reads:

ǫRPA
c (rs, ζ = 1) = − A

8π4b2
r2
s , (5.14)

reproducing the result of Casula et al. [43].
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To evaluate ERPA
c (rs, ζ) at intermediate polarizations, we need to com-

pute the limits:

lim
x→0

Fσ,σ′(x, ζ) with ζ < 1. (5.15)

It turns out that F↑,↑(0, ζ) = π/(1 + ζ), F↑,↓(0, ζ) = π, and F↓,↓(0, ζ) =

π/(1 − ζ). Thus, our final result for the spin dependent RPA correlation

energy is the following:

ǫRPA
c (rs, ζ) =

{

− A
2π4b2

(1 + 1
1−ζ2 )r

2
s if 0 ≤ ζ < 1

− A
8π4b2

r2
s if ζ = 1

(5.16)

Notice that when ζ = 0 we recover the RPA correlation energy for the unpo-

larized 1DEG in Eq. 5.6, calculated in the previous paper[43]. On the other

hand, in the limit ζ → 1 the coefficient of the leading term (r2
s) diverges as

1/(1 − ζ). This is not surprising, since a non analytic behavior of the RPA

correlation energy for ζ → 1 is present also in 2D[78] and 3D[79]. In these

higher dimensions the correlation energy is continuous as ζ → 1, while its

first derivative with respect to ζ is diverging. This behavior is reproduced

accurately in the correlation energy parameterization of appendix A. Thus

the non-analyticity is stronger as the dimensionality is reduced. In any case,

the pathological behavior in 1D deserves an accurate analysis. We take into

account the function F↓,↓(q, ζ), where the 1/(1 − ζ) divergence comes from.

For q ≥ 0, and 0 ≤ ζ ≤ 1, its analytic form is:

F↓,↓(q, ζ) =
4π

q2

(

X+ ln
2X+

X+ +X− +X− ln
2X−

X+ +X−

)

, (5.17)

with X+ = q/2 + 1 − ζ , and X− = |q/2 − (1 − ζ)|. As already mentioned,

F↓,↓(q, 1) = 0 ∀q, while F↓,↓(0, ζ) = π/(1 − ζ) for ζ < 1. In the (q, ζ)

domain with q ≥ 0, and 0 ≤ ζ ≤ 1, the function F↓,↓(q, ζ) is non analytic

for q = 2(1 − ζ), which is a line of cusps. Therefore a Taylor expansion of

F↓,↓ around (q = 0, ζ < 1) is possible, but its radius of convergence given

by 2(1 − ζ) is getting smaller as ζ → 1. This means that the behavior

− A
2π4b2

(1 + 1
1−ζ2 )r

2
s of the correlation energy is valid for ζ < 1 in a region

where rs << 2(1−ζ)b/α. Outside this region the asymptotic behavior of the

RPA correlation energy breaks down and one must compute the integral in

Eq. 5.11 with the full dependence of Fσ,σ′

(

αrs

b
z, ζ
)

on its first argument. In

other words, one needs to include higher order terms in the RPA expansion.
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5.1.2 Low Density Correlation Energy

The low density dependence of the correlation energy can be determined

approximately by noting that the spin dependence of the one dimensional

electron gas can be mapped to that of a Heisenberg spin chain[80]. The

reason for this mapping is that in low density the electron gas occupies a

locally antiferromagnetic Wigner lattice[13]. In fact at these densities the

electron gas has strong quasi Wigner crystal correlations as discussed in

Ch. 6. This result is confirmed by our calculations of the spin dependent

density-density correlation function shown for b = 1, rs = 4 using LRDMC

in Fig. 5.1.
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Figure 5.1: Density-density correlation function, g(r), between electrons of
like spin ( guu(r)) and unlike spin (gud(r)). The peaks of the correlation
functions occur at alternate multiples of the mean interparticle spacing (2rs),
suggesting a locally antiferromagnetic Wigner lattice of electrons.

The coupling of this Heisenberg spin chain can be determined by noting

that on this lattice electrons can only exchange by tunneling between lat-

tice sites. This tunneling can be calculated within the WKB approximation

as is detailed in Sec. 9.2.1. This quantum tunneling will be exponentially

suppressed at low density and so the form of the coupling as a function of
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density is[81]:

J(rs) =
J⋆

r1.25
s

e−ν
√

rs (5.18)

where J⋆ and ν are interaction dependent constants.

The energy dependence of the antiferromagnetic Heisenberg spin chain is

known from theory to be

E(ζ) =
π

2

(

1 +
1

2 ln ζ

)

ζ2 (5.19)

plus higher order terms[82]. Also the difference in energies between the polar-

ized and unpolarized spin chains is J(1 + ln 2)[83]. These calculations define

the spin dependence of the total energy of the electron gas at low density.

At low density the correlation energy must cancel the power law and

logarithmic terms in spin dependence of both the exchange and kinetic terms

above in order to provide the exponentially small spin dependence given

by Eq. 5.19. Assuming that there are no spin independent terms in this

correlation energy, this means that to the first two orders in rs, the correlation

energy must scale as

lim
rs→∞

ǫc(rs) =
C

r2
s

+
C2 ln rs

rs
, (5.20)

at fixed ζ where the prefactors C and C2 are determined by the low density

behavior of the kinetic and exchange energies. It is also possible to use

this information to make an assumption for the density dependence of the

total energy at low density: ǫ ≈ C ln rs/rs. This approximation does not

hold exactly for the electron gas, suggesting that there are some polarization

independent terms in the low density limit of the energy. This result was

found previously for ζ = 0 by Casula et al. [43].

5.2 QMC Calculations of Total Energy

Great care is taken to remove all biases in the calculation of the energy in the

thermodynamic limit via QMC. First the finite lattice space error is removed

by calculating the energy for several numbers of electrons at several lattice

38



spacings and fitting the result to

E(a) = E + ca2, (5.21)

where E is the energy in the limit of zero lattice spacing, a is the lattice

spacing and c is an arbitrary constant. Using this methodology, the energy

is calculated for several different numbers of electrons and the result is ex-

trapolated to the thermodynamic limit both by directly calculating the finite

size corrections in Sec. 4.3 and by fitting the data to a form with free pa-

rameters given by calculating the finite size effects using the MSA Jastrow

wavefunction

E(N) = E +
c
√

logN

N2
+

c2
N2

, (5.22)

where E is the energy extrapolated to the thermodynamic limit N is the

number of electrons in the calculation and the constants c and c2 are fit-

ting parameters determining the size of the one-body and two-body finite

size corrections. Additionally the number of electrons N is chosen in each

calculation so that the number of electrons in each spin species is odd, thus

avoiding degeneracy effects. These two methods agree well for a wide range

of densities and spin polarizations as shown in Fig. 4.3.

The results of these calculations yield a series of total energies as a func-

tion of density and spin polarization. Calculations have been performed

for b = 0.1, 1, 2 and b = 4 for densities from rs = 0.1 to 50.0 at ζ =

0, 0.25, 0.5, 0.75 and 1. The results of these calculations are summarized by

Fig. 5.2 and Fig. 5.3 which show the behavior of the correlation energy as a

function of the density and the polarization respectively. These calculations

show a good agreement with the theory in Sec. 5.1. Specifically, correlation

energy at high density (rs = 0.1) as a function of the polarization shows ves-

tiges of the discontinuity in the correlation energy at ζ = 1 (Eq. 5.16). The

density dependence for each polarization also agrees well with the quadratic

behavior in rs predicted by the RPA.

5.3 Parameterization of Correlation Energy

We have developed two parameterizations of the energies presented in section

5.2. One of these gives a functional form for the correlation energy as a
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Figure 5.2: The correlation energy of the electron gas as a function of the
density rs is plotted for b = 1 at five values of the polarization, ζ . The
correlation energy shows a quadratic behavior in the high density limit as a
function of rs as predicted by the RPA.

function of rs and ζ and has an excellent agreement with all of the theoretical

predictions in the high density limit. The other parameterization yields a

functional form of the sum of the exchange and correlation energies. This

functional form is able to reproduce the exponential low density decay of

the spin susceptibility as well as the density dependence of the total energy

at high density. Both of these parameterizations provide an excellent fit

to the QMC data with χ2 = 4.33 for the correlation parameterization and

χ2 = 9.97 for the exchange correlation parameterization. The functional

forms and other details of these parameterizations is given in appendix A.

These parameterizations do suffer from theoretical difficulties as well in

various limits with both violating at least one of the limits obtained in

Sec. 5.1. The total energy obtained from the correlation functional violates

the Lieb-Mattis theorem at low density and the exchange correlation func-

tional exhibits unphysical oscillations in the correlation energy near ζ = 1

at high density. For this reason these parameterizations may only be recom-

mended for use in DFT calculations with caveats. The correlation functional
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Figure 5.3: The correlation energy of the electron gas as a function of the
polarization ζ is plotted for b = 1 at four values of the density, rs. The upper
right panel shows evidence of the RPA behavior, quadratically as a function
of ζ near ζ = 0 and then assuming a vastly different value at ζ = 1. The
upper right and lower left panels show the intermediate case where the RPA
behavior is giving way to a spin dependence that allows for an exponentially
small spin velocity. The lower right panel shows the ζ dependence at low
density.

should be used only if the density remains greater than rs ≈ 4 for the entire

system under interest. Likewise calculations using the exchange correlation

functional should take care the polarization of the electron gas does not ex-

ceed 0.5 for densities greater than rs = 0.4.

Nevertheless these functionals are successful in determining the charge

compressibility as a function of the density. These results are presented in

Fig. 9.1 where the compressibility determined from the correlation function

as

χρ = 1/
∂2ǫ

∂r2
s

(5.23)

is found to be in very good agreement with the compressibility determined

from the long wavelength excitations of the electron gas. The results found

using the exchange correlation functional lay on top of the solid line in
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Fig. 9.1. The spin velocity determined from the second derivative of the

total energy with respect to ζ using the exchange correlation functional is

also in good agreement with the spin velocities calculated both using the

WKB approximation and the long wavelength spin excitations.
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Chapter 6

Quasi Wigner Crystal

Crossover

In two and three dimensions, Wigner found that that as the density of the

electron gas decreases, the potential energy of the electron gas which scales

as 1/rs will eventually dominate the kinetic energy which scales as 1/r2
s [84].

In this regime the electrons crystallize in order to minimize their potential

energy, a state which is known as a Wigner crystal. In one dimension the

situation is different. The one dimensional electron gas does not undergo

any phase transitions as the density is varied because of the increased impor-

tance of quantum and thermal fluctuations in one dimension [85]. A seminal

work by Schulz shows that when long range interactions are included within

the bosonization framework, a quasi Wigner Crystal order appears in one

dimension[10]. In this chapter we will present the theory of the quasi Wigner

Crystal derived by Schulz and then will perform QMC calculations to observe

these correlations in the one dimensional electron gas. While Schulz argues

that these correlations are present at all densities, we find that the strength

of the quasi Wigner Correlations becomes effectively zero at high density and

there is a crossover behavior as the density decreases.

6.1 Theory of the Quasi Wigner Crystal

Schulz begins with a second quantized Hamiltonian where the dispersion has

been linearized around the Fermi points.

Ĥ =
∑

k,σ

[

(k − kF )n̂L
k,σ + (−k − kF )n̂R

k,σ

]

vF +
1

2L

∑

q

V (q)n̂qn̂−q +Ĥbs (6.1)

where n̂L,R
k,σ is the number operator for left (right) moving electrons with

momentum k and spin σ and n̂q is the Fourier component of the total particle

density. Ĥbs describes the processes that scatter the electrons from the left
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to the right moving branches and vice versa. The linear energy-momentum

relation in Eq. 6.1 makes it soluble with the Bosonization technique. In this

case, that means introducing the phase fields

φν = −iπ
L

∑

p 6=0

1

p
e−ipx

[

νR(p) + νL(p)
]

(6.2)

where ν(p) = ρ(p), σ(p) are the usual charge or spin density operators. This

transformation allows the Hamiltonian to be split into commuting parts for

the charge and spin degrees of freedom. In this case the charge piece is of

particular interest:

Ĥρ =
vF

2π

∫

dx
[

π2(1 + g̃1)Π
2
ρ + (1 − g̃1)(∂xφρ)

2
]

+
1

π2

∫

dx dx′V (x− x′)∂xφρ∂x′φρ (6.3)

where Πρ is the momentum density conjugate to φρ and g̃1 characterizes the

backscattering and involves the matrix element at q ≈ 2kF . Again using

the Bosonization method the density at a point x can be written using the

expression

ρ(x) = −
√

2

π
∂xφρ(x) +

1

2πα
e2ikF xe−i

√
2φρ(x) cos

[√
2φσ(x)

]

+ Ce4ikF xe−i
√

8φρ(x) +H.c. (6.4)

where C is an interaction dependent constant. Now the charge-charge corre-

lation function can be written as:

〈ρ(x)ρ(0)〉 = A1 cos(2kF )e−c2
√

lnx/x+ A2 cos(4kF )e−4c2
√

lnx + . . . (6.5)

where A1, A2 and c2 are interaction dependent factors and only the most

slowly decaying Fourier components are given. Schulz concluded that the

extremely slow decay (slower than any power law) of the 4kF component

of this correlation function corresponded to a charge density wave sort of

behavior. Because the periodicity of this charge density wave is the same as

the mean interparticle spacing in the electron gas, this has the nature of a

quasi Wigner crystal.

The relation in Eq. 6.5 can be Fourier transformed on a finite segment of
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the wire in our QMC calculations to yield the 4kF component of the static

structure factor of the electron gas[44].

∫ L

c0

dx exp(−i4kFx) 〈ρ(0)ρ(x)〉 = aL exp(−4c
√

logL) + b, (6.6)

where we explicitly include the dependence on the system size L by taking

the Fourier transform over the simulation cell. The short-distance cutoff

c0 is introduced because the LL theory provides only the asymptotic be-

havior for 〈ρ(0)ρ(x)〉. Further logarithmic corrections could be included[86]

in Eq. 6.6, but we take just the leading order expansion which should be

the most relevant for the system sizes computed here. One would need much

larger systems which are beyond our current numerical capabilities to resolve

further corrections.

6.2 Calculation of the Quasi Wigner Crystal

Correlations

This section uses QMC calculations of the electron gas at several densities

to characterize the presence of Quasi Wigner Crystal Correlations in the

quasi one dimensional electron gas. All calculations are performed using

either LRDMC or DMC and the mixed estimator bias is corrected using the

forward walking technique. As indicated in Sec.6.1, the static structure factor

is an invaluable tool for analyzing the correlations of the electron gas. The

structure factor S(k) = 1
N
〈ρ(−k)ρ(k)〉, where ρ(k) =

∑

j e
ikrj are the Fourier

components of the electron density is calculated for several values of rs and

for many different numbers of electrons for b = 0.1. The results of these

calculations are shown in Fig. 6.1. In all cases, the functional dependence of

the structure factor at 4kF agrees with the Bosonization prediction made by

Schulz in Eq. 6.6. However, there is no prediction made for the size of the

prefactor of these correlations. Although the scaling of the structure factor

has previously been calculated in realistic systems[44], to our knowledge this

is the first work to systematically study the prefactor.

It is apparent that the 4kF correlations are much more significant for lower

densities where the scaling with the number of electrons is readily apparent.

Apparently the prefactor determining the strength of these correlations un-
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Figure 6.1: Scaling of the 4kF component of the structure factor with respect
to the number of particles. The scaling is reported for various densities with
b = 0.1. The lines are the best fit of the function in Eq. 6.6 given by the LL
theory found in Schulz [10].

dergoes a drastic change as the density decreases. Efforts have been made to

fit the available data to the form in Eq. 6.6. Although the data agrees with

the theory for all densities, it is very difficult to extract the exact values of

the various parameters a, b and c because of logarithmic form of the scaling

and the limited range of calculations available. The best approximation to

the data is presented in Fig. 6.2.

Again, this scaling shows a transition where the correlations at 4kF have

a small prefactor at high density and a larger one at low density. The best

explanation of this behavior may be found by directly considering the full

momentum resolved structure factor. At high density the structure factor is

very similar to the MSA prediction SMSA(k) = S0(k)/(1 + 2ρũ(k)S0(k))[87]

as expected (see Fig. 6.3), since in the limit rs → 0 the MSA becomes exact

[43]. Specifically, there is no peak at 4kF up to rs = 0.5 (rs = 0.2) for b = 0.1

(b = 0.0001), namely there are no correlations with the mean interparticle

spacing (Fig. 6.4). As the density decreases, a peak develops at 4kF . This

peak is a necessary feature for a one dimensional quasi Wigner crystal and it
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Figure 6.2: Prefactor of the scaling of the 4kF component of the structure
factor as given in Eq. 6.6. Calculations are performed for b = 0.1. Estimates
of the errors on the values are not included because the data set was too
small for reliable estimates.

is absent in the MSA prediction which has no structure at 4kF . For b = 0.1

we carried out simulations with up to 450 particles for rs = 0.5 and rs = 0.75,

to check the convergence of the S(k) in the liquid regime close to the onset

of the 4kF charge correlations (Fig. 6.4).

6.3 Screening Restores Conventional LL

Predictions for Correlations

The quasi Wigner crystal correlations derived by Schulz[10] apply only when

the interaction is long range (1/x). In the case of the screened interaction

above the potential decays as 4R2/x3 at large distances, so a simple scaling

argument shows that the Wigner crystal correlations should be absent at

very low densities. Indeed, if rs > 8R2/π the typical kinetic energy of the

electrons, the Fermi energy EF , is larger than the potential energy computed

at the mean interparticle distance (2rs). At these low densities Matveev[81]
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panel), computed for a system with 78 electrons. The QMC (points) and
MSA (solid lines) structure factors are reported for different densities (rs).
Also the noninteracting spinless fermion (NSF) structure factor is drawn
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has pointed out that it is possible to map the screened short-range interaction

into a repulsive contact potential

V (x) = Uδ(x), (6.7)
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for N = 182 and N = 450 at two densities (rs = 0.5 and rs = 0.75) in the
proximity of the crossover from a liquid to a quasi-crystal.

where the constant U is chosen so the delta function potential and the

screened one have equal transmission coefficients. On the other hand, in

the density range 1 ≪ rs < 8R2/π the 1/x shoulder of the potential can

induce 4kF correlations, which are strong but not strong enough to stabilize

any sort of quasi-order. Calculations of the finite size scaling of the 4kF peak

of the structure factor for b = 0.1 and R = 200 show the saturation of its

height for N & 100, and so demonstrate the absence of the quasi Wigner

crystal correlations when screening is introduced despite quite a large dis-

tance to the metallic gate (Fig.6.5). Only in the limit of R → ∞ does one

recover the unscreened potential and the possibility for a quasi long-range

charge order.

In addition to our work, Hausler et al. have studied the case of a screened

interaction in one dimension [13]. They used a world line Monte Carlo al-

gorithm to calculate the LL parameters of the electron gas on a lattice for

a long range 1/x interaction that was screened by a semi infinite metallic

gate, just as in our work. The results found were in good agreement with

49



 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 3.4

 3.6

 3.8

 0  20  40  60  80  100  120  140  160  180  200

S
(4

k F
)

Number of Electrons

Unscreened
Screened, R=200

Figure 6.5: Scaling of the 4kF component of the structure factor with respect
to the number of particles for b = 0.1, and rs = 4. For comparison, the scaling
is reported for the unscreened Vb interaction, and the screened potential in
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the expected behavior, showing a suppression of the spin velocity and an

enhancement of the charge velocity which was also good agreement with

perturbative estimates at high density.
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Chapter 7

Calculating Excited State

Energies via QMC

This chapter will discuss three methods for obtaining excited state energies

within quantum Monte Carlo. The simplest of these is to simply change

the trial wavefunction in a DMC or LRDMC calculation and let the fixed

node constraint prevent the wavefunction from collapsing to the ground state

[56]. Proceeding in order of sophistication is the transient estimate (TE)

method[88] which attempts to extract the excited state energies from the

imaginary time behavior of the simulation. Finally, the correlation function

Monte Carlo method (CFMC)[89] allows the energy for the excited states to

be calculated by projecting a set of trial excited state wavefunctions in imag-

inary time and diagonalizing the resulting basis. This chapter will compare

the relative benefits of these methods for calculating the momentum resolved

excitation energies of the one dimensional electron gas.

7.1 Fixed Node Excited State Energies

The simplest method of computing the excited state energy with a DMC

or LRDMC calculation is to change the trial wave function so that it has a

different nodal surface than the ground state. The projection nature of DMC

and LRDMC cause these methods to find the lowest state consistent with the

provided nodal surface. The difference in symmetry between the excited state

wave function and the ground state wavefunction causes the Monte Carlo

procedure to find the lowest energy state consistent with the excited state

rather than the ground state when an excited state trial wavefunction is used.

This method has been used extensively throughout the QMC literature (eg.

[56, 90, 91, 92]). In one dimension this task is simplified because the nodes of

the ground state wave function are commensurate with the nodes of all of the

excited state wave functions. This is the case because the nodes of the ground

state are fully determined by the coincidence points where electrons of the
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same spin are at the same location. The antisymmetry of the wavefunction

requires that these points be nodes in any dimension for any wave function,

be it a ground or excited state. While this is true in higher dimensions,

the nodal structure of both the ground state and excited states is much more

complicated and there is no guarantee that the nodes of the ground state wave

function must be contained in the nodes of the excited state. A complication

for calculating excitation energies in one dimension is the desire to calculate

the full momentum resolved excitation spectrum. Using this method such

a calculation would entail a separate QMC calculation for each excitation

momentum. For this reason other methods are used in this dissertation.

7.2 Transient Estimate

The transient estimate method was originally proposed as an attempt to cir-

cumvent the fixed node approximation in Diffusion Monte Carlo calculations

[93, 94]. This approach uses the imaginary time dynamics of the total energy

to determine the ground state energy before the variance becomes too large.

Depending on the quality of the trial wavefunction, this method could im-

prove on the energy calculated within the fixed node approximation because

it does not require the projection to converge, and could thus in principle use

the small time data unspoiled by the sign problem to determine the energy.

The TE method was recently used by Yamamoto to calculate the mo-

mentum resolved excitation energies of a one dimensional electron gas on a

lattice [88]. The central idea of this method is that it is possible to use the

imaginary time behavior of a Monte Carlo calculation to extract the energy

of the low lying excited states by comparing the imaginary time behavior of

a wavefunction orthogonal to the ground state, |Ψe〉, to the imaginary time

behavior of the ground state.

〈Ψe| e−τH |Ψe〉
〈Ψ0| e−τH |Ψ0〉

=
∑

i=1

|〈Ψe|Ψi〉|2 e−τ(ǫi−ǫ0), (7.1)

where |Ψi〉 is the wavefunction of the i’th excited state and ǫi is its energy.

In practice, this can be found in a DMC or LRDMC calculation by using

the forward walking technique [67]. In that technique, the trial wavefunction

guiding the random walk is ΨT , and the configurations R are taken from
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the equilibrated part of the run. Using this procedure, the imaginary time

behavior is found to be:

∑

i=1

|〈Ψe|Ψi〉|2 e−τ(ǫi−ǫ0) =
∑

t

〈

Ψe(R, t+ τ)

ΨT (R, t+ τ)
W(t, τ)

Ψe(R, t)

ΨT (R, t)

〉

Ψ0ΨT

. (7.2)

where W(t, τ) = Πt+τ
i=twi is the product of each walker’s weights between

the time-step t and t + τ and Ψ(R, t) is the wavefunction evaluated with

configuration R at time-step t.

In practice this is useful because a single QMC calculation can be used

to calculate the energies of excited states with several momenta {k} simply

by changing the wavefunction Ψe during the forward walking. In the case of

the electron gas we used a wavefunction first proposed by Feynman in his

work on liquid helium [95]. This wavefunction merely multiplies a density

(or spin) oscillation onto the ground state of the interacting system

|Ψe〉 = ρ(k) |Ψ0〉 , (7.3)

where ρ(k) =
∑

j e
ikrj . In this case as the projection time τ goes to infinity

ǫk − ǫ0 = lim
τ→∞

− ∂

∂τ
ln

〈ΨT | ρ(k)e−τHρ(−k) |Ψ0〉
〈ΨT | e−τH |Ψ0〉

. (7.4)

where ǫk is the energy of the lowest lying excited state with momentum k.

The primary difficulty with this method is that the noise in the forward

walking grows exponentially with the projection time. Therefore, it can be

difficult to take the limit τ → ∞. The rate of convergence of the energy in

Eq. 7.4 with propagation time τ is governed by two factors. The first of these

is that the energy converges faster when the overlap of the trial wavefunction

(in this case Eq. 7.3) with the lowest energy excited state is large. The second

condition is that the convergence of Eq. 7.4 is fastest when the gap between

the lowest energy and second lowest energy excited states is large.

In our case, the Feynman ansatz is a better approximation to the lowest

energy excited state wavefunction for long wavelength excitations causing

our simulation to converge faster for these small k excitations. Also, gov-

erning the convergence is the gap between the lowest and next lowest energy

excitations with a given momentum. In the thermodynamic limit there is a

continuum of excitations for each momentum so the TE method would con-
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verge extremely slowly. However, in a finite system there is a gap between

the energies of the excitations which is proportional 1/N . This results in an

increased rate of convergence for smaller systems whose usefulness is partially

offset by a finite size bias that will be explored in detail in section 7.4.

7.3 Correlation Function Monte Carlo

This method is based on the idea that it is possible to compute the exci-

tation spectrum of a system in a direct and variational way by projecting

an initial set of basis functions in imaginary time to determine the lowest

energy excitations of the system. As in section 7.2 this method utilizes a

forward walking procedure to calculate the excited state energies from the

distribution of configurations obtained via QMC for the ground state. In

this method, rather than using the imaginary time dependence directly, the

Hamiltonian and overlap matrices are calculated for a basis of trial excited

states which are projected in imaginary time.

Our discussion of the CFMC method follows Ceperley and Bernu [89].

This method has its underpinnings in variational calculations of the excited

state energies given a basis of known functions φi(R). Given this set of

functions, the best estimate of the excited state energies of the Hamiltonian

occurs at the stationary points of the Rayleigh quotient

Λi =

∫

dR
∑

j ai,jφj(R)Ĥ
∑

k ai,kφk(R)
∫

dR
∑

j,k ai,jai,kφj(R)φk(R)
(7.5)

with respect to ai,j . The approximate eigenvalues Λi determined by this pro-

cedure are upper bounds to the exact eigenvalues via MacDonald’s theorem

rendering the method variational [96].

The CFMC method builds on the above method by projecting the initial

wave functions {φi(R)} in imaginary time with e−τĤ and then solving the

generalized eigenvalue problem in Eq. 7.5. We write this as a linear system

of equations where the matrix N contains the overlap of the basis functions

as they are projected

Nj,i(τ) =

∫

dR dR′ φj(R
′) 〈R′| e−τĤ |R〉φi(R), (7.6)
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and H the matrix element of the Hamiltonian with the projected basis func-

tions,

Hj,i(τ) =

∫

dR dR′ φj(R
′) 〈R′| Ĥe−τĤ |R〉φi(R). (7.7)

Now the estimates of the excited state energies are found by solving the

generalized eigenvalue problem

H(τ)~a(τ) = Λ(τ)N(τ) (7.8)

where ~a(τ) are the coefficients of the projected basis functions and Λ(τ) is

the eigenvalue.

Again for the 1D electron gas, we choose the Feynman ansatz at the trial

state for each given momentum,[95] i.e. ρ(k)|Ψ0〉 ∀k for the charge excitations

and σ(k)|Ψ0〉 ∀k for the spin excitations, where σ(k) =
∑

j

∑

σ σe
ikrσ

j is the

Fourier transform of the spin density. In the following we, work with the

charge excitations, but the same applies for σ(k). Since the basis set is

orthogonal, the method in Ref. [89] is greatly simplified as every k component

is decoupled. For each k we have to calculate

〈Ψ0| ρ̂(k, τ)Ĥρ̂(−k, 0) |Ψ0〉
〈Ψ0| ρ̂(k, τ)ρ̂(−k, 0) |Ψ0〉

=

∑

i ǫ
i
kA

i
ke

−τ(ǫi
k
−E0)

∑

iA
i
ke

−τ(ǫi
k
−E0)

, (7.9)

where ρ̂(k, τ) is written in the Heisenberg representation with imaginary time

evolution, |Ψi
k〉 is the i’th excited state with momentum k, ǫik is its energy,

Ai
k ≡ |〈Ψi

k|ρ(−k)|Ψ0〉|2 is the spectral weight of the eigenvalue expansion,

and E0 is the ground state energy. For large τ the ratio in the above equa-

tion will converge to the lowest energy ǫ0k of a given k, provided A0
k is non

zero. Another limitation is given by the exponentially small denominator,

which will exponentially increase the statistical noise of the estimate as the

projection time increases. Both the numerator and denominator in Eq. 7.9

are evaluated by means of the forward walking[67, 62] procedure based on

the DMC or LRDMC sampling. Indeed, for large enough τ the left hand side

of Eq. 7.9 can be rewritten as

∫

dR dR′ ρ(−k)G(R,R′, τ)EL(k,R′)ρ(k)P (R′)
∫

dR dR′ ρ(−k)G(R,R′, τ)ρ(k)P (R′)
, (7.10)
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where EL(k,R) = Hρ(k)ΨT (R)
ρ(k)ΨT (R)

is the local energy of ρ(k)|ΨT 〉,

P (R) = ΨT (R)Ψ0(R) (7.11)

is the QMC mixed distribution, and

G(R,R′, τ) = ΨT (R)〈R|e−τH|R′〉/ΨT (R′) (7.12)

is the importance sampled Green’s function.

7.4 Finite Size Errors

In contrast to the ground state case where the finite size errors are quite

significant, the finite size effects in these excited state calculations tend to

be rather small. The reason for this is that the excited state energies are

calculated as a difference of energies of the excited and ground states of the

system with the same number of electrons. For this reason the finite size

errors in the energy cancel to a large degree. In fact one large contribution

to the finite size errors of the ground state calculation, the single body kinetic

terms, cancel exactly.

Additionally, the collective nature of the excitations and the use of the

Feynman ansatz[95] to describe them also contributes to the relatively small

finite size bias. The plasmons (and spin waves) are delocalized throughout the

electron gas and thus the interaction of the plasmon with its periodic images

is desirable. Furthermore, the plasmon at each momentum is commensurate

with the cell and thus the finite size cell should not distort this excited state

to a large degree. This is in marked contrast to excitations in semiconductors

and insulators where the excitons are bound and localized in the sample. In

that case, the interactions with the periodic images of the exciton cause a

finite size bias and for supercells that are too small, and the exciton may not

fit inside the cell and be distorted, causing further finite size effects [91].

In order to test the cancellation of the finite size errors in the momentum

resolved charge excitation spectrum, the spectrum is calculated with very

large datasets for b = 0.1, rs = 3.5 and N = 10, 14, 18 and 22. The results

of these calculations are presented in Fig. 7.1, which shows a very good

agreement of the excitation energies calculated with different cell sizes.

56



 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0  0.5  1  1.5  2

ω
ρ(

k)

k/kF

N = 10
N = 14
N = 18
N = 22

Figure 7.1: Charge excitation energy vs number of electrons in the simulation
cell. b = 0.1 and rs = 3.5. The different numbers of electrons preclude calcu-
lation of the energy at the same momenta, however the underlying spectrum
is remarkably consistent for the different system sizes.

7.5 Comparison of Methods

There is one more consideration to be taken into account when calculating

the excitations using forward walking. This is the lattice discretization error

that is inherent in the LRDMC method. This lattice discretization error

causes an approximation to the propagator. This can be contrasted with the

Trotter error present in the short time propagator of a DMC calculation. In

LRDMC, the kinetic energy term is given a shift ν to correct for the lattice

discretization error when calculating the ground state energy (Eq. 4.23). This

correction works well in ground state and CFMC calculations, however the

propagator remains approximate and thus the transient estimate method

which relies on the exact imaginary time dependence of the simulation is

biased.

This bias is most evident at high densities where the kinetic energy is the

dominant term in the total energy. Fig. 7.2 shows the errors in the excitations

computed for b = 1, rs = 0.2 using both DMC and LRDMC with the transient
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estimate method. The time-step for the DMC calculation is taken to have

the same diffusion constant as the LRDMC calculation with a = 1.1. The

unbiased value is determined using either the TE method with DMC or the

CFMC method with the largest lattice spacing. The figure clearly shows that

a rather large error is made for the excitation energies obtained within the TE

method where the underlying propagation is LRDMC with a large time-step.

This error is subsequently reduced as the lattice spacing is decreased.
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Figure 7.2: Charge excitation energy for b = 1, rs = 0.2 calculated using the
TE method with two different LRDMC lattice spacings and a DMC time-step
yielding the same diffusion constant as a lattice spacing of 1.1. The energies
are all converged as a function of imaginary time for k/kF < 0.5. The results
for the largest LRDMC lattice space are shown using the CFMC method for
comparison, both this calculation and the DMC based TE calculation are
converged with respect to the time-step or lattice size.
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Chapter 8

Momentum Resolved

Excitation Energies

In this chapter we will present results for the full momentum resolved charge

and spin excitation spectrum for the unscreened wire as a function of density.

These are the only excitations possible that conserve the continuous trans-

lational symmetry of the system. Numerically the sign problem makes it

very difficult to calculate the lowest excited state energies for large momenta

and for large numbers of electrons. However, it is possible to observe several

properties of the electron gas using the results that we have been able to

obtain.

8.1 Charge Excitations

Theory can provide some insights into the nature of the momentum re-

solved charge excitation energy of the 1D electron gas. Consider first a

non-interacting system of electrons, which is sufficient at high density, since

the kinetic terms become much larger than the interaction terms. For mo-

mentum k < 2kF , where kF = π
4rs

is the Fermi momentum of the unpolarized

electron gas, the lowest energy single particle excitation is a particle hole ex-

citation where an electron with momentum kF −k is promoted to momentum

kF with a change of energy

ωρ(k) = kFk −
k2

2
, k ≤ 2kF (8.1)

For an infinite system the excitation energy vanishes at k = 2kF ; however, for

a finite size cell with N electrons the values of the momentum k are discrete

and are spaced by δk = π
Nrs

. Thus in the lowest particle hole excitation the

electrons are promoted to the single particle state with momentum kF + δ/2
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which is the lowest allowed unoccupied state. This changes Eq. 8.1 to

ωρ(k) = (kF +
δ

2
)k − k2

2
, k ≤ 2kF . (8.2)

Therefore the minimum energy excitation for promoting an electron from a

filled to an empty state is ωρ(2kF ) = π2/2Nrs. This may also be viewed in

a different way by noting that the minimum energy excitation for k = 2kF

corresponds to simply shifting the momentum of each of the occupied states

by δk = π
Nrs

so that the energy change is the same as a change of the center

of mass momentum by δk and a change of δE = π2/2Nrs in agreement with

the result above.

The arguments are actually much more general. The fact that change

in energy is simply the center of mass kinetic energy is a consequence of

Galilean invariance which requires that all other terms in the energy of the

system do not change if it is viewed from a moving reference frame. Thus for

an interacting system the relative positions and velocities of the particles do

not change when viewed from a moving reference frame (in a non-relativistic

system). Thus the conclusions apply to the interacting system as well: in all

cases the excitation energy at 2kF vanishes except for finite size effects.

The Galilean invariance also allows the energy of the modes with mo-

mentum 2nkF where n is an integer to be determined in the interacting

system. For these modes the trial wave function can be rewritten to have an

overall phase factor exp
{

i π
Nrs

∑N
i ri

}

. This phase factor can be eliminated

using the fixed phase approximation[97]. which allows the exact energy to

be determined in 1D as does the fixed node approximation. This leaves the

problem unchanged and the energy trivially equal to the ground state en-

ergy of the system up to a finite size correction of order 1/N . The energy

of these k = 2nkF excitations may be calculated using the forward walking

technique and the Feynman ansatz trial wavefunction as before. However, as

this is a poor wavefunction for this state a much easier approach is to use the

ground state wavefunction multiplied by the phase factor above as the trial.

The energy of these excitations as a function of imaginary time is plotted for

both 2kF and 4kF at rs = 1, 2 and 4 in Fig. 8.1. The data shows especially

for rs = 1 that convergence is difficult to achieve using the Feynman ansatz

for the excitations. The line indicates the theoretically predicted gap for the

finite size system at the given momentum. The values of these theoretical
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estimates have been checked using the trial wavefunction mentioned earlier

in this paragraph.
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Figure 8.1: Charge excitation energy as a function of projection time for
b = 1 and rs = 1, 2 and 4. All calculations were performed with 46 electrons.
The left column shows the convergence of the Feynman ansatz wavefunction
in CFMC for k = 2kF where the converged energy is π2/(2Nrs). The right
column shows the same for k = 4kF where the converged energy is π2/(Nrs).

Calculations of the full momentum resolved excitation spectrum have also

been carried out for several values of the density. While the converged limit

of these calculations is known, the approach to the limit has interest as well.

This approach can in principle be used to study how the spectral function

of the excitations for a given k changes as a function of the density of the
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system where the spectral function is defined as

A(k, ω) =
∑

i

δ(ǫik − ω)
〈

Ψi
k

∣

∣ ρ(k) |Ψ0〉 (8.3)

where |Ψi
k〉 is the i′th excited state of the electron gas with momentum k

and energy ǫik. As the forward walking projects this state in imaginary time

for densities where the lower lying excited states have a larger overlap with

the Feynman ansatz, the energy will converge more rapidly. Conversely, the

energy will converge more slowly if the overlap with the low lying excited

states is smaller. This situation is shown in Fig. 8.2. The calculations at

rs = 1, 2 and 6 are performed with a modest amount of data using the

Feynman ansatz trial wavefunction and CFMC. In all cases the excited state

energy at k = 2kF and k = 4kF should be nearly zero apart from 1/N terms.

Instead the 4kF mode has not converged for rs = 1 and the 2kF mode has

not converged for rs = 6. This can be attributed to the presence of the quasi

Wigner crystal order at lower densities which makes the 4kF density wave

more accessible an excitation.

By changing the polarization of the electron gas from ζ = 0 to ζ = 0.5

it is possible to observe the physics behind the different soft modes. The

charge excitation spectrum for rs = 2 and ζ = 0, 0.5 is shown in Fig. 8.3.

The soft mode at 2kF splits into two soft modes at kF and 3kF (where kF is

defined relative to the unpolarized gas). However, the 2kF mode should still

be gapless even for the ζ = 0.5 system because of the continuous translational

symmetry of the system. The splitting of the soft mode is explained by noting

that those excitations are formed by moving an electron from one edge of

the Fermi surface to the other. Whenever the polarization is changed, the

Fermi surface splits into two nested surfaces: one for the up and one for the

down electrons. The gapless excitation at 4kF is unchanged by the change

in polarization which is consistent with the interpretation that this is the

excitation with the periodicity of the mean interparticle spacing and does

not depend on the spin of the electrons.
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Figure 8.2: Charge excitation energy as a function of k for b = 1 and rs = 1, 2
and 6. All calculations were performed with 46 electrons. This graph shows
the a faster convergence of the 2kF mode for higher densities and a faster
convergence for the 4kF mode at lower densities.

8.2 Spin Excitations

The spin excitation spectrum is more difficult to compute because at low

density sampling the spin degrees of freedom becomes difficult due to the

pseudo nodes. It is possible at high to moderate densities to compute the

spin excitation spectrum and again there are a few theoretical predictions

available to explain the behavior of the excitation spectrum. The Luttinger

liquid theory with long range interactions predicts that the spin excitation

spectrum at low energy will be linear. The LL theory predicts the excitation

spectrum will be linear near k = 0[10]. Also again as for the charge excita-

tions, the energy gap for excitations with momentum 2nkF should be zero.

Finally the limit of the low density excitations is known exactly because of

the mapping from the spin degrees of freedom to the Heisenberg spin chain

where the excitation spectrum is now

ωσ(q) = πJrs |q| , (8.4)
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Figure 8.3: Charge excitation energy as a function of k for b = 1 and rs =
2 with ζ = 0 and ζ = 0.5 The gapless excitation mode at 2kF for the
unpolarized system splits into two modes for the ζ = 0.5 electron gas.

where J is the coupling constant in the effective Heisenberg Hamiltonian[80]

Ĥσ =
∑

i

JŜl · Ŝl+1. (8.5)

The full spin spectrum for b = 1, rs = 1 is shown in Fig. 8.4. It exhibits

the small gap at q = 2kF as well as a roughly linear dispersion at small q.

Further details concerning the behavior of the long wavelength portion of

this spectrum will be discussed in chapter 9.
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Figure 8.4: Spin excitation energy as a function of k for b = 1 and rs = 1
obtained using the CFMC method. At this high density convergence is easy
to obtain for the mode at 2kF . The spectrum is nearly linear for k/kF < 0.5
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Chapter 9

Long Wavelength Charge and

Spin Excitations

The convergence of the excitation energies with propagation time may be

difficult to obtain for a general k with the methods presented in chapter 7.

However, for long wavelength excitations ρ(k) |Ψ0〉 is a good approximation

to the lowest excited state wave function with momentum k and the energies

can be determined easily with a short projection time τ . Using sum rules, it

is possible to derive a relation between the excitation spectrum at short range

and the charge compressibility and spin susceptibility[98]. This chapter will

explore the charge compressibility and spin susceptibility of the quasi one

dimensional electron gas.

9.1 Charge Compressibility

Using sum rules it is possible to relate the spectrum of the long wavelength

charge excitations to the charge compressibility, χ, [75, 99] yielding

ωρ(k → 0) = vF |k|
√

ρFV (k → 0) +
χ0

χρ
, (9.1)

where ωρ(k) is the energy of the lowest charge excitation with momentum k,

ρF is the density of states of the free electron gas at the Fermi energy, and

χ0 = 16r3
s/π

2 is its compressibility.

The form χ0/χρ is a particularly useful choice because it is related to the

capacitance of the electron gas per unit length

1

C
=

1

e2
∂µ

∂N
=

1

e2ρF

χ0

χρ
, (9.2)

where C is the capacitance per unit length and µ is the chemical potential[100,

101, 102]. This form is also useful in that it isolates the role of exchange

and correlation in the compressibility from the noninteracting compressibility
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which is dominant at high densities.

We fit the charge excitation spectrum using this form for several densities

and plot the results in Fig. 5.
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Figure 9.1: Inverse charge compressibility χ0/χρ of the unpolarized and fully
polarized wire for b = 0.1, with both an interaction screened by a metallic
plane as defined in section 3.3 (R = 1) and an unscreened interaction. Also
the HF (dashed back line) charge compressibility is reported for the unpo-
larized wire. The solid lines are obtained from the second derivative of the
energy parametrization explained in chapter 5, while the points are evaluated
through the charge excitations.

As can be seen in Fig. 9.1, the charge compressibility is becoming neg-

ative as the density decreases. This phenomenon has been previously ob-

served in calculations on carbon nanotubes using density functional theory

(DFT)[103]. In that case they argue that that a small diameter nanotube

can in fact over-screen an applied electric field. In our case, the negative

capacitance is due to the compressibility of the background charge in the

Jellium model which is neglected in the present formulation.

The knowledge of χρ can shed more light on the properties of the elec-

tron gas a function of the density. By looking at the charge compressibility

(Fig. 9.1) it is apparent that the role of the electron correlation is becoming
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increasingly important around rs = 0.75 for b = 0.1, where there is significant

discrepancy between the Hartree-Fock (HF) and QMC values of χρ. In par-

ticular, the correlation makes the system softer than the HF. At even lower

densities the charge compressibility of the unpolarized system is approaching

that of a fully polarized (or spinless fermion) gas. The difference between

the two is going exponentially to zero, and they almost overlap for rs > 4

(with b = 0.1). This means that the energy of the spin excitations is getting

smaller and smaller as the density decreases.

9.2 Spin Susceptibility

The exponentially small difference between the compressibility for the polar-

ized and unpolarized electron gas may be better understood by considering

the spin susceptibility χ0/χσ of the one dimensional electron gas. Sum rules

may also be used to relate the long wavelength spin excitation energies to

the spin susceptibility as was done in the case of the charge compressibility.

In this case the relation is:

ωσ(k → 0) = vF |k|
√

χ0

χσ

, (9.3)

where χ0 = π2/16r3
s is the spin susceptibility of the noninteracting electron

gas.

This value becomes exponentially small at low densities, where it is diffi-

cult to get a statistically accurate QMC estimate, since the sampling of the

spin is “frozen” by the presence of quasi nodes (pseudo nodes) between un-

like spin electrons [43]. The strong interaction makes the electrons repel each

other at short-range, and the corresponding wave function is very small at the

coalescence points of electrons with opposite spin. Consequently the spin flip

rate in the QMC sampling becomes small and the efficiency decreases. How-

ever, the charge properties do not seem to be affected by this slowing-down.

The physical reason for the quasi nodes will become even more apparent in

Sec. 9.3, when we will discuss the Tonks Girardeau physics of the screened

wire. To determine the spin susceptibility in this density regime, it is useful

to use the WKB approximation for determining the dynamical properties of

the electron gas.
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9.2.1 Spin Susceptibility via WKB

Following the example of Matveev[81] we use the WKB approximation to

determine the rate at which two electrons exchange by calculating the en-

ergy barrier that they must overcome. Although fluctuations prevent the

formation of a Wigner crystal, the equilibrium positions of the electrons are

assumed to be equally spaced with periodicity 2rs. Central to the accu-

racy of this approximation is the fact that at low densities the tunneling is

dominated by the effect of the potential and the statistics can be ignored.

Furthermore, all electrons are treated as uncorrelated except for a single pair

which is allowed to exchange. In contrast to Matveev’s approach we assume

that the other electrons are distributed about their equilibrium positions ac-

cording to the harmonic approximation with a Gaussian spread instead of

being fixed delta function point particles. Taking the initial positions of the

two exchanging electrons to be at x = 0 and x = 2rs, they feel a static

potential given by

VWKB(x) =
∑

n 6=0,1

∫ ∞

−∞
ρ(y)V (x− 2nrs + y)dy, (9.4)

where ρ(y) =
√

α/π exp(−αy2) is the equilibrium charge density of the non

exchanging electrons and V (x) is the interparticle potential. The harmonic

approximation gives α =
√

m∂2W (x)
∂x2 , where W (x) is the potential at a given

lattice site due to an infinite array of electrons spaced as 2rs.

The WKB approximation provides a means of calculating the the energy

barrier that the two exchanging electrons must overcome. Choosing the

center of mass for the two exchanging electrons be at x = rs (which is

half way between the equilibrium positions of the two electrons), and also

switching to reduced coordinates where r is the distance between the two

exchanging electrons, the total potential energy is:

Vtunnel(r) = V (r)−2

∫ ∞

−∞
ρ(y)

[

V (rs −
r

2
− y) −

∞
∑

n=−∞
V (rs −

r

2
− 2nrs − y)

]

dy

(9.5)

The problem is now reduced to determining the rate at which the reduced

particle tunnels from the well with r > 0 to the well with r < 0.

We will now follow the standard solution for the tunneling rate of a parti-
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cle through the barrier in a double well potential. This derivation is presented

in numerous quantum mechanics texts, with this discussion following Grif-

fiths [104]. The WKB approximation assumes that the potential is slowly

varying on the scale of ~ (making it a better approximation when rs is large

in this case). Making the definition p(r) ≡
√

2m(E − V (r)) it is possible to

approximate the wave function in the region where the energy of the particle

E > V (r):

Ψ(r) ≈ C
√

p(r)
e±ip(r)r. (9.6)

Similarly the wave function in the region where E < V (r) can be approxi-

mated as

Ψ(r) ≈ C
√

κ(r)
e±κ(r)r, (9.7)

where κ ≡
√

2m(V (r) −E).

Strictly speaking the WKB approximation is not valid at the classical

turning point, but it is possible to connect these wave functions at this point

via several different methods. The method presented in Griffiths is to lin-

earize the potential around the turning point and then to use the exact

solution to Schrödinger’s equation in terms of Airy functions. These solu-

tions can be used to provide connection conditions for the wavefunction in

the classically allowed and forbidden regions (Eqns. 9.6 and 9.7).

To construct a wave function for this tunneling potential using the WKB

approximation, note that the wave function must be exponentially decaying

as r increases in region III and be continuous at the boundaries between the

regions I, II, and III. This wavefunction will have the form:

ψ(r) =























C√
κ(r)

[

2 cos θ e
1

~

R r1
r

κ(r′)dr′ + sin θ e−
1

~

R r1
r

κ(r′)dr′
]

r ∈ I

2C√
p(r)

sin
[

1
~

∫ r1

r
p(r′)dr′ + π

4

]

r ∈ II

C√
κ(r)

e
− 1

~

R r

r2
κ(r′)dr′

r ∈ III

(9.8)

where θ(E) ≡ 1
~

∫ r2

r1
p(r′)dr′ and r = r1 at the boundary between regions I

and II and r = r2 at the boundary between regions II and III. The two lowest

energy states will be the even and odd wave functions above with the fewest

nodes. The necessary condition for the wave function to be odd in this case

is that ψ(r = 0) = 0, leading to the relation tan θ(E) = −2eφ(E), where
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Figure 9.2: Tunneling potential for center of mass in WKB calculation. Equi-
librium positions are at 2kF and −2kF . The right hand side is separated into
three regions for a given trial energy E. There are two classically forbidden
regions (I and III), and one classically allowed region (II).

φ(E) ≡ 1
~

∫ r1

0
κ(r′)dr′. Likewise for even solutions, the wave function must

have a zero derivative at r = 0 leading to the relation tan θ(E) = 2eφ(E).

Assuming the the wavefunctions for the lowest even and odd states are very

similar in region II apart from a sign (a good approximation if the value of

the potential in region I is large compared to E), it is possible to construct

a wavefunction that (up to a choice of phase) is almost entirely in either the

right or left wells:

Ψright,left =
1√
2
(Ψeven ± Ψodd) (9.9)

where + is for the right well and − is for the left well. The energy barrier

separating these two states is then just Eodd − Eeven, which is the energy

barrier for two electrons to exchange within the WKB approximation.

At low densities the electrons behave as a spin chain obeying the Heisen-

berg Hamiltonian where the spin flips are mediated by an exchange of nearest

neighbor electrons, so the spin susceptibility can be determined from the en-

ergy barrier computed within the WKB approximation by analogy with the
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Heisenberg Hamiltonian in 1D as shown by Matveev [81]. The spin velocity

of the equivalent Heisenberg spin chain can be found from the Bethe ansatz

solution[105, 106], yielding vσ = πJrs where J is the size of the energy barrier

in the WKB approximation. This gives the susceptibility through Eq. 9.3.

Where the density is large enough that QMC reliably samples the spin

exchanges Fig. 9.3 shows the spin susceptibility computed using the forward

walking techniques agrees well with the WKB estimate only after the smear-

ing of the electron sites given by the harmonic approximation. It is therefore

important to use the potential in Eq. 9.4 to have an accurate estimate of the

exchange at intermediate densities. This agreement and the fact that the dy-

namical many-body corrections to the WKB estimate are very small at low

density[107] justify the use of WKB for dilute systems where it is difficult to

extract information from the QMC calculations. In addition, the exponential

decay of vσ as a function of
√
rs obtained in this way is in agreement with

previous results [81, 108, 109] for potentials where they can be compared.

9.3 Tonks Girardeau Gas and Fogler

Prediction

Fig. 9.3 summarizes our findings for the unscreened wire. The liquid-to-quasi-

crystal crossover is shifted to higher densities for thinner wires, while the

spin susceptibility is always significantly different from zero in the crossover

region for the values of the confinement taken into account. The smallest

b we studied (b = 0.0001) corresponds to one of the thinnest confinements

realized experimentally [110, 111]. The spin exchange is still sizable in the

crossover region due to the not-so-long localization length of the electrons

and not-so-thin width of the wire.

Fogler predicted the existence of a so called Coulomb Tonks behavior

where the electrons behave as spinless fermions what still feel the normal

coulomb repulsion. Our study does not therefore find any signature of the

Coulomb-Tonks gas phase in between the liquid and quasi Wigner crystal,

which was claimed by Fogler for ultrathin wires [31]. However, the structure

factor plotted in Fig. 6.3 reveals the tendency for electrons to approach the

noninteracting spinless fermion behavior as the wire width decreases. The

fundamental difference with respect to the noninteracting spinless picture is
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Figure 9.3: Inverse spin susceptibility χ0/χσ for different thicknesses. The
dependence on rs is shown. The points are the QMC calculations, while
the lines are the WKB estimates. The arrows indicate the liquid-to-quasi-
Wigner-crystal crossover determined by the appearance of a 4kF peak in
the structure factor. This crossover happens between rs = 0.4 and 0.8 for
b = 0.0001, between rs = 0.6 and 1.0 for b = 0.1 and between rs = 1.5 and 2
for b = 1.

the pronounced peak at 4kF , which characterizes the Coulomb long-range

interactions at low density.

The low density limit with screened interactions is particularly interest-

ing as the screening introduces a new feature. At low densities the electron-

electron repulsion at short range makes exchanges between electrons virtually

impossible, corresponding to the limit U → ∞. As a result for the ultra-

thin wire with strong screening (b ≪ 1 and rs ≫ 8R2/π), the mapping of

the interaction to the potential in Eq. 6.7 becomes exact. In this situation

not only do the electrons behave as spinless fermions, but the charge veloc-

ity approaches that of noninteracting spinless fermions (vρ = 2vF ). This is

analogous to the case of bosons with infinite repulsive contact interactions,

(or impenetrable particles) where the system can be mapped into a nonin-

teracting Fermi gas [29]. The impenetrable Bose system is often called a
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Tonks-Girardeau gas. In our case the situation is analogous, namely the

fermions become impenetrable due to an effective infinite contact repulsion

and so they behave as if they were noninteracting and spinless. We refer to

this behavior as Tonks-Girardeau regime. One of its features is the presence

of nodes in the wave function at the coalescence of unlike spin pairs. This

is the extreme case when the pseudo nodes that complicate the ergodicity

of Monte Carlo calculations at low density as discussed in Sec. 4.2 become

actual nodes.

While this effect has been discussed in the literature [81, 31, 30], our work

provides quantitative predictions for the onset of the noninteracting spinless

behavior. Fig. 9.4 shows the charge velocity in the limit of low density for

different values of the screening in the thinnest wire we studied (b = 0.0001).

We found that in order for the Tonks-Girardeau behavior to manifest itself,

the distance to the gate R must be less than 0.1 and the density must be

lower than rs = 1. For R larger than 0.1, at low density the charge velocity

does not converge to the noninteracting spinless fermion limit (2vF ), but

saturates at a larger value.
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Figure 9.4: Asymptotic large rs values of the charge velocity in units of vF

vs. inverse screening length for ultrathin wire (b = 0.0001) from R = 0.05 to
R = 5. In the inset we report the full dependence of the charge velocities on
rs at different R.
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It is possible to see the transition of the screened electron gas to the

noninteracting spinless fermion behavior more directly by analyzing the static

structure factor, as was done in the unscreened case. In Fig. 9.5, the S(k) is

plotted at different densities for the ultrathin wire with b = 0.0001 and gate

located at R = 0.1 from the wire. Contrary to the case of the unscreened

wire (Fig. 6.3 lower panel), at low densities the peak at 4kF is absent and the

structure factor approaches that for noninteracting spinless fermions quite

closely. Notice that at the same time the charge velocity approaches the

value of 2vF (see Fig. 9.4).
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Figure 9.5: Static structure factor for the screened wire with b = 0.0001 and
R = 0.1, plotted for three values of the density, rs = 0.2,0.4 and 0.8. The
solid lines correspond to the MSA prediction for each density, and the black
line is the structure factor for noninteracting spinless fermions (NSF).

The same study was repeated for the wire with b = 0.1. Here the short-

range behavior of the potential is much less repulsive than in the b = 0.0001

case and the same value R for the screening. The result of this is that the

charge velocity does not converge to 2vF even for a gate as close as R = 0.1,

which equals the width of the wire and thus represents the geometric limit of

validity for the uncorrelated inter-wire interaction. Therefore for b = 0.1 and

thicker wires whose widths are realizable in semiconducting nanostructures,
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we did not find the Tonks-Girardeau behavior in our calculations.
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Chapter 10

Experimental Observation of

1DEG via Momentum Resolved

Tunneling
A recent series of experiments by Auslaender et al. have pioneered a new

technique for measuring the excitation spectrum of one dimensional semicon-

ductor quantum wires [35, 36, 37, 38, 39, 40, 41]. This chapter will endeavor

to present some of their most impressive results and will provide a backdrop

against which the calculations of chapter 11 will be set.

10.1 Experimental Setup

The principal innovation that made the experiments by Auslaender et al.

possible was the realization that much more could be learned about the

electron gas by creating a spatially extended tunnel junction rather than a

quantum point contact. To this end they designed a device where two quasi

one dimensional wires fabricated using the cleaved edge overgrowth technique

are grown parallel to each other separated by a thin but highly insulating

barrier. They were then able to measure the current of electrons flowing from

one wire to the other through the barrier. This device is shown schematically

in Fig. 10.1.

Tunneling an electron from one wire to the other leaves the system in

an excited state. Energy is conserved in this process so in the experiment

an electric field provides a bias favoring the tunneling. In this experiment a

gate produces a bias voltage V , shifting the relative energy of the states in

the two wires by eV . Additionally, the geometry of the sample preserves the

translational symmetry along the wires and as a consequence the momentum

of the electrons is conserved in the tunneling process. A magnetic field is

also applied perpendicular to the plane of the wires. This has the effect of

giving the electrons a momentum boost equal to kB = eBd/~ as they tunnel

between the two wires where B is the strength of the magnetic field and d

is the distance between the wires. This freedom allows precise control of the
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Figure 10.1: Schematic of device for momentum resolved tunneling of elec-
trons. The device is shown with the cleaved edge parallel to the figure. The
magnetic field B is perpendicular to the plane. Two quantum wires are
shown a distance d apart with the upper wire (UW) being 20 nm thick and
the lower wire (LW) 30 nm wide. Figure is reproduced from Steinberg et al.

[41] .

momentum and the energy of the electrons tunneling between the two wires

and thus provides a means to measure the excitation spectrum of the electron

gas in a one dimensional quantum wire.

In order to understand this spectroscopy it is first useful to recall that

although Luttinger Liquids do not have a discontinuity in occupation at the

Fermi surface, they nevertheless do have a well defined Fermi surface. Given

the existence of a Fermi surface it is possible to determine both the density in

the wires and their excitation spectrum. Experimentally this is accomplished

by varying the magnetic field with a constant bias. The tunneling current

will initially be very small if the density of the electron gas in the wires is not

equal. As the magnetic field is increased the tunneling current will remain

small until it increases to a large value at

B1 =
|kF,u − kF,l|

ed
, (10.1)

where kF,u is the Fermi momentum in the upper wire. This corresponds

to the point at which unoccupied states in the wire with the lower density

become available for tunneling. As the magnetic field increases the tunneling

current again becomes small as all of the states available for the tunneling
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become unoccupied. Finally when the magnetic field is equal to

B2 =
|kF,u + kF,l|

ed
(10.2)

the tunneling current again increases because the electrons traveling in op-

posite directions can tunnel between the two wires. Knowledge of these two

values of the magnetic field, B1 and B2 allow the Fermi momentum in each

wire to be determined and thus the density in each wire is known.

10.2 Spin Charge Separation

The potential of the momentum resolved tunneling experiments are in no

way limited to determining the density in the wires. By scanning the bias

voltage and the magnetic field, it is possible to map out the spectral functions

of the interacting electrons in both wires. Graphically this is presented in a

figure by Zülicke (Fig. 10.2) that shows how the spectral functions for two

noninteracting one dimensional wires may be determined in this experiment

[112].

Figure 10.2: The figure on the left shows the noninteracting dispersion curves
as a function of momentum for two wires. The Fermi energy for the wires are
indicated by dashed horizontal lines which are coincident in this case. The
center figure shows the effect of a finite voltage V that provides a relative
shift of the curves. This situation would correspond to a large tunneling
current between the two wires. Finally, the curve on the right shows the
effect of an applied magnetic field B which shifts the curves relative to each
other by momentum pB = eBd/~. This figure is due to Zülicke [112].
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A more complete description of the tunneling between the wires is found

by studying the properties of the single particle spectral functions in the

quantum wires. There are two possible behaviors for the spectral function

in the quantum wires. They may have the characteristics of a Fermi liquid,

exhibiting a delta function peak in the spectral function corresponding to a

quasiparticle state. On the other hand if the wires are successful realizations

of Luttinger Liquids, they will instead have singularities in the spectral func-

tion A(k, E) at E = vσq and E = vρq where q = k − kF for k near kF and

q = k+kF for k near −kF . These singularities are due to the spin and charge

collective excitations into which an incoming electron is decomposed [113].

The tunneling current between these wires is proportional to a convolution

of the spectral functions of the wires. Auslaender et al. have observed how

this tunneling current changes a function of momentum and polarization [35].

For a small momentum k the slopes of the differential conductance may be

used to determine the velocities of the elementary excitations of the wire.

The results of such measurements are presented in Fig. 10.3

After performing an analysis involving the capacitance of the wires, these

velocities are mapped to the spin and charge velocities of the two wires in the

sample. These velocities are assigned to the spin and charge excitations in

the wires and being unequal they provide evidence of spin charge separation.

10.3 Localization Transition

In addition to measuring the charge and spin velocities of the electron gas

as a function of the density, Auslaender et al.[39] found that a peculiar phe-

nomenon occurred whenever the density in the upper wire decreased below

20µm−1 a phenomenon that was further explored by Steinberg et al. [41].

Their results for the differential tunneling conductance as a function of bias

voltage and magnetic field are shown in Fig. 10.4.

They found that when the density decreased the peaks in the tunneling

conductance broadened, corresponding to a state that is localized in real

space. They also measured the conductance along the top quantum wire and

found that the conductance was quantized and ballistic, meaning that this

localization was not an impurity effect. We will delay further discussion of

this phenomenon to Section 11.3.
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Figure 10.3: This figure shows the differential tunneling current. This ve-
locities of six different modes are found. Figure is from Auslaender et al.

[39]
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Figure 10.4: Differential tunneling current as a function of the bias voltage
and the applied magnetic field. The figure clearly indicates a change in
behavior as the bias voltage decreases below V ⋆

G. The inset at the bottom
shows the densities of the upper and lower wires as a function of the gate
voltage. This figure is due to Steinberg et al. [41].
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Chapter 11

Localization Transition:

Comparison of Theory and

Experiment
In this chapter we present the results of calculations that are designed to

provide insight to the experiments described in chapter 10. To this end we

assume that the correlation of the electrons between the two wires are weak

and that the properties of the electrons in each wire can be calculated by us-

ing the approximation that the other wire is a screening medium. Within this

model we use the techniques presented earlier in this thesis to calculate the

velocities of the charge and spin modes in each wire. Additionally we calcu-

late the density for the localization transition to occur and find a remarkable

agreement with the experimentally determined density of 20µm−1.

11.1 Model

The results presented in chapter 6 offer an avenue to explore the role of the

electron correlation in the transition observed in the experiment. As the

density in the wire decreases the strength of the potential increases relative

to the kinetic energy. One effect of this increased relative strength is that

exchanges between the electrons are suppressed, causing the system to de-

velop a strong local crystalline order. To better quantify the importance of

this effect in the experimental system, in this section we take into account

a more realistic potential, assuming the electrons are screened by the lower

wire instead of an infinite metallic gate. To construct an interaction poten-

tial suitable for this calculation, we neglect the correlation between the wires

and treat the screening effects coming from the electrons in the lower wire

within the linear response theory. We write the potential in Fourier space

V (k,R) = Vb(k) + Vint(k,R)χ(k)Vint(k,R), (11.1)
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where Vb(k) and Vint(k,R) defined in Eq. 3.12 are the intra- and inter- wire

potentials respectively. Vint(k,R) is evaluated by assuming that the thickness

of the two wires is the same (and equal to the upper wire). This significantly

simplifies the form and the calculation of the inter-wire interaction. χ(k) is

the static density-density response function of the lower wire taken in the

RPA:

χRPA(k) =
χ0(k)

1 − Vb′(k)χ0(k)
(11.2)

where χ0(k) = 1
πk

ln
∣

∣

∣

k−2kF

k+2kF

∣

∣

∣
is the static response function for a one dimen-

sional noninteracting Fermi gas and b′ is the width of the lower wire. The

experimental geometry sets the parameters in our quasi one dimensional in-

teraction V (k,R).

The confinement potential for the upper wire is chosen so that the elec-

trons are constrained to be inside the 10nm thick wire. Specifically, we

require that the radial root mean squared displacement is equal to the litho-

graphic thickness yielding b = 0.707(≈ 1/
√

2) for the upper wire. The choice

of confinement also agrees well with the experimental observation that a sec-

ond mode becomes populated at n = 80µm−1 [35]. Similarly, the lower wire’s

thickness is given by b ′ = 1.061(≈ 1.5/
√

2). The distance between the wires

is R = 3.0, while the Fermi momentum in the RPA response function for the

lower wire is set by the density rs = 0.83.

Our screened potential in Eq. 11.1 is similar to that used by Fiete et

al.[114], who chose a perfect metal response function which is valid when

the screening wire is at very high densities. Here we use the RPA which

depends on the experimental density of the lower wire through the value of

the Fermi momentum kF . We notice that our screened potential equals that

in Ref. [114] at k = 2kF and in the limit of small k, namely the long-range

tail is the same, decaying approximately as 1/x
5

4 .

11.2 Spin and Charge Velocities

We determine the charge and spin velocities by means of the QMC method

explained in Sec. 7 and the effective J coupling via the WKB approach.

We computed those quantities close to the transition for the homogeneous

wire with rs = 1.25 (40µm−1). The charge velocity turns out to be vρ =

2.33vF . The corresponding LL parameter g = vF/vρ = 0.43 is in agreement
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with previous estimates[114] and comparable to the experimental g ≈ 0.5,

measured at the density of 40µm−1.[39] At the same density the experimental

value for vF/vσ is in the range of 1.1 − 1.6, while we found vF/vσ = 1.24 at

40µm−1.

In Fig. 11.1 we plot the full dependence of the spin velocities on the den-

sity computed with the perturbative generalized RPA (GRPA),[14] WKB

and the exact QMC methods. Although the GRPA is poor near the local-

ization transition, it agrees with the QMC at high density. As noted above

the experimentally measured spin velocities are also in rough agreement with

the QMC estimate in a range of densities around n = 40µm−1. To show the

importance of the microscopic details of the interaction in reproducing the

measured values we also display in Fig. 11.1 the GRPA prediction based on a

different model potential which assumes a screening due to a metallic gate at

R = 50.[39] This latter model gives virtually unrenormalized spin velocities

(vσ ≈ vF ) up to n = 40µm−1 in contrast with the strong suppression of the

values found in the experiment and in our calculations.

Last but not least, our WKB estimate of J turns out to be of the order

of the experimental temperature (T = 0.25K) around n = 10µm−1. This

means that at least the first few Coulomb blockade peaks in the experiment

should be in a spin incoherent regime, where the Temperature is greater than

the energy to excite a spin excitation. In this case the LL description by Fiete

et al. applies, although in the vicinity of the transition the spin degrees have

a sufficiently high energy that they should not be dominated by the thermal

broadening.

11.3 Localization Transition

We first analyze the homogeneous system and then explicitly include a lon-

gitudinal confinement in our simulations to quantify the finite-length impact

on the properties of the system, and more closely reproduce the experimental

situation. In the homogeneous system of electrons interacting via the poten-

tial in Eq. 11.1, we observe the appearance of a 4kF peak in the S(k) around

rs = 2.2. As shown in Fig. 11.3, it is clearly visible for rs > 2.6, whereas no

peak is discernible for rs 6 1.9. This crossover is similar to that found for

long range 1/x interactions. However, the important difference here is that
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1 − V (2kF )/(πvF ). The green line for the
gated wire (with R = 50) uses the potential described by Auslaender et

al.[39] whereas the dotted blue line uses the potential (Eq. 11.1) screened by
the lower wire.

the quasi long-range order is not present in this case. Indeed, as in section

6.2 we have made a systematic study of the scaling with size, and the height

of the peak converges to a finite value in the thermodynamic limit for all

densities taken into account. This behavior is consistent with the decay of

the screened interaction found in section 6.3, which is faster than 1/x [10].

Therefore, the crossover is between a high-density liquid to one with strong

4kF correlations, whose onset can be related to the transition occurring in

the experimental system.

11.3.1 Confined Electrons

The above treatment of the upper wire as infinite and homogeneous can

be improved to resemble the experiments more closely. In the study of the
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Figure 11.2: Inverse charge and spin velocity of the infinite wire. The cal-
culations were performed with an upper wire thickness b = 1 and a lower
wire thickness b = 1.5. Points from both experiments by Auslaender et. al.
and our QMC calculations. Graph was produced in collaboration with O.
Auslaender

1DEG there are strong effects due to any perturbation that breaks the trans-

lational invariance of the system. For instance, Tserkovnyak et al. showed

that the asymmetry in the oscillations of the conductance as a function of

the momentum transferred between the two wires can be explained at the

WKB level by having a soft confinement potential for the upper wire.[36] In

a later paper they accurately determined the functional form of the longitu-

dinal confinement by fitting its parameters to reproduce the period of those

oscillations as a function of the magnetic field applied to the sample.[37] The

potential that provided a good fit to their data reads

V (x) = EF

(

2x

L

)8

, (11.3)
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Figure 11.3: Static structure factor for a homogeneous wire with b = 0.707
interacting with the effective potential in Eq. 11.1, which includes the screen-
ing by another homogeneous wire with rs = 0.83, b = 1.061, and R = 3. The
structure factor is plotted for several values of the upper wire density, with
rs ranging from 1.7 to 9.4. The calculations have been converged to the
thermodynamic limit, requiring N = 62 for rs ≤ 3.0 and N = 78 subject to
periodic boundary conditions for rs = 4.6 and 9.4.

where EF is the Fermi energy of the upper wire, and L is approximately 1.5

times the lithographic length of the upper wire, namely L = 300 in a⋆
0 units.

We used the above potential together with the interparticle potential in

Eq. 11.1 to study the effect of the confinement on the transition. Although in

principle diffusion Monte Carlo yields an unbiased ground state energy in one

dimension even for a confined system, (the nodes being exactly determined

by the coalescence conditions just as in the infinite homogeneous wire) in

practice it is necessary to improve the guidance wave function to reduce

the variance of our estimates. The Jastrow factor used in the homogeneous

system (Eq. 4.10) is replaced by a more sophisticated factor including one-

, two-, and three-body terms, fully optimized by means of the stochastic

reconfiguration (SR) algorithm,[115, 116] while the Slater part is kept the

same as in Eq. 4.7. The one-body Jastrow exp(J1) is needed to localize the
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electrons in the finite system. It reads

J1 =

N
∑

i=1

(

−αx4
i − βx5

i

)

, (11.4)

where α is a free parameter and β =
√
Eu(2/L)4/5 is fixed to cancel the

contribution of the potential to the local energy at the leading order in the

large distance expansion. The two-body exp(J2) and three-body exp(J3)

Jastrow factors are given by

J2 =
∑

(iσ)<(jσ′)

uσσ′

2 (xij), (11.5)

and

J3 =
∑

(iσ),(jσ′),(kσ
′′
)

uσσ′

3 (xij) u
σ′σ

′′

3 (xjk), (11.6)

where xij is the interparticle distance. Since the finite system with screened

interactions is dominated by short-range correlations, we chose un(x) to have

a simple Gaussian form

uσσ′

n (x) = δσσ′

n exp
(

−x2/γσσ′

n

)

, (11.7)

with δσσ′

n and γσσ′

n variational parameters. Energy minimization improves the

quality of the variational wave function and stabilizes the forward walking

estimate[62] of the expectation values on the DMC projected state.

Again the static structure factor is determined for different densities of

electrons in the upper wire. In contrast to the calculations for the homo-

geneous system, the density of the electrons is not a direct input to the

calculation. Instead, we control the number of electrons in the wire which

are then free to relax according to the external potential. An average density

can be determined by considering the locations of the 2k̃F and 4k̃F peaks of

the structure factor and comparing their value to those of an infinite array

of electrons, 2k̃F = π
2r̃s

and 4k̃F = π
r̃s

, r̃s being the effective density in the

system. Using these conventions, the structure factor for several different

numbers of electrons is plotted in Fig. 11.4.

In addition to the formation of a broad peak in the S(k) at 4kF around

N = 80, which corresponds to r̃s = 2.3, the density profile n(x) = 〈
∑

i δ(x−
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Figure 11.4: Static structure factor for a wire as in Fig. 11.3, but with finite
length S(k) is plotted for 20, 40, 60, 70, 80, 90 and 100 electrons. The
corresponding effective densities r̃s are reported in the legend.

xi)〉 of the electrons also shows a clear cut sign of the transition. At low

densities, the electrons are distributed in order to minimize the interparticle

repulsion. This leads to N oscillations in the density profile of the wire,

a configuration also called “Wigner molecule”,[117] which corresponds to

the 4kF peak in the S(k). When the density is increased, the number of

peaks in the density profile is reduced by a factor of two, the Pauli exclusion

principle between like spin particles being the only factor that prevents the

electrons form crossing each other. At the same time the 4kF peak in the

S(k) disappears and only a 2kF singularity is present. The density is plotted

in Fig. 11.5 for half of the wire as the system is symmetric under inversion

around its center. This plot also suggests a transition near N = 80.

Surprisingly, the calculations with the confinement potential and the in-

finite wire give very similar structure factors in the vicinity of the transition,

suggesting that the interparticle correlations are not strongly affected by the

external confinement at those densities. At lower densities the peak at 4kF

is much larger for the homogeneous system because of the limited number of
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Figure 11.5: Density profile for electrons in the finite wire as in Fig. 11.4,
plotted for half of the wire length. N = 20, 40, 60, 70, 80, 90 and 100 are
considered.

particles in the finite wire. Both the infinite and finite wires show a transi-

tion from a system with 2kF correlations to a state where correlations have a

2rs periodicity. The crossover occurs around rs = 2.3, which corresponds to

the density of 22µm−1 in a GaAs heterostructure. This is very close to the

density found by Steinberg et al. (20µm−1) for the localization transition in

wires where one subband is occupied.

11.4 Refinements

It seems that in the experiment the localization involves only few particles

(up to 12 in the highest density localized state), i.e. only a section of the wire

takes part in the transition. This is an important difference with respect to

our calculations where the transition takes place throughout the system in a

quite homogeneous way. A non homogeneous behavior is found at the edge

of the wire where the confining potential in Eq. 11.3 turns upward. There

the transition happens at higher densities, as one can see in Fig. 11.5. This
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can be understood in terms of a local mean field description. At the edge of

the wire the effective chemical potential µ0 − V (x) is smaller, corresponding

locally to a fluid at much lower density.

Apart from these features, we did not find any Wigner correlated patch

embedded in a liquid-like system, which seems to be the experimental out-

come. Therefore a more detailed analysis of the experimental setup is re-

quired to understand better the experiment. For instance, one of the top

metallic gates used to tune the upper wire density could induce a plateau in

the external potential, nucleating a Wigner region as suggested by Mueller.[118]

On the other hand, the role of disorder is not clear. Although in the liquid

phase the system is in a ballistic regime, when the conductance is quantized

the disorder could take over in the localized phase and affect the charge

distribution in the wire. AlAs wires, where the disorder is stronger, re-

vealed conductance resonances explained in terms of Coulomb blockade (CB)

physics.[119] CB behavior has also been found in the localized phase of GaAs

wires.[41]

Even if there are features that still need explanation, our calculations

show that the electronic correlation plays a very important role at the ex-

perimental conditions, as the 2kF -to-4kF correlations transition takes place

exactly in the proximity of the critical density for localization found in the

experiment.
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Chapter 12

Conclusions

This dissertation has presented several contributions to the interface between

theory and experimental realizations one dimensional phenomena. Chapter 3

presented a model whereby the quantitative properties of a quasi one dimen-

sional electron gas could be calculated. Within this model an understanding

of the behavior of the total energy of the electron gas as a function of den-

sity and polarization is developed, culminating in extensive and exact QMC

calculations of the energy. Two parameterizations of these energies are pre-

sented in the appendix with a potential application in the density functional

theory of low dimensional electrons.

Considerable attention was paid to the properties of the one dimensional

gas with long range 1/x interactions. These interactions were known to

cause quasi Wigner Crystal behavior from previous theoretical work. To

our knowledge this is the first qualitative study to analyze the onset of this

quasi Wigner crystal behavior in a continuous system. Our study showed

that these correlations become important in a crossover from a liquid like

state that favors 2kF correlations to a quasi Wigner Crystal state favoring

4kF correlations as the interaction strength increases (decreasing density in

the case of the electron gas). This crossover was marked by the formation

of a peak in the static structure factor at 4kF as the density was decreased.

Additionally the charge compressibility of the gas softened in the vicinity of

this transition.

The introduction of screening is crucial for the understanding of exper-

imental realizations of quasi one dimensional electrons. Schulz predicted

that any screening would destroy the long range correlations of the electron

gas[10], a finding that we confirmed. There was however a local 4kF correla-

tion that formed as the density decreased analogously to the unscreened case.

As the density decreased even further, interactions suppressed the exchange

of the electrons (which is primarily governed by short range repulsion). When
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the density was decreased to a low enough value, the electrons behaved as

spinless fermions. For a sufficiently strong screened interaction these spinless

fermions began to appear noninteracting, a situation that has strong paral-

lels to the fermionization of ultra cold boson gases as predicted by Tonks and

Girardeau.

The onset of the short range density oscillations proved to be a useful

lens through which a localization transition in quantum semiconductor wires

could be examined. Our work found that correlations could be responsible

for the localization transition observed by Steinberg et al. [41]. This is an

important confirmation as scattering off impurities can also cause such a

localization transition. Indeed impurities have dominated the properties of

earlier quantum semiconductor wires [119]. Furthermore, we predicted the

density at which this transition occurs to be 22µm−1 in remarkably good

agreement with the observed transition at 20µm−1. Additionally the charge

and spin velocities of the wire were calculated from the long wavelength

charge and spin excitation energies and found to be in agreement with the

experiments.
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Appendix A

Parameterizations of the

Energy for LSDA Calculations

This appendix will present two parameterizations of the energy of the quasi

one dimensional electron gas with b = 1. The successes and failures of the

two parameterizations will be discussed.

A.1 Correlation Functional

This section presents a parameterization of the correlation energy of the

electron gas. Use of this parameterization assumes that the exchange and

one body kinetic energies are calculated separately using Eq.5.3 and Eq.5.2.

The following is the form for this parameterization:

ǫc(rs, ζ) = ǫc(rs, 0) − Cr2
sζ

2(1 + ζ2) +
2ζ2(ǫc(rs, 1) − ǫc(rs, 0) + Cr2

s(1 + ζ2))

1 + e(1−|ζ|)γ/t(rs)

(A.1)

ǫc(rs, 0) = − rs + a0r
2
s

b0 + c0rs + d0r2
s + e0r3

s

ln(1 + 2b0Crs + α0r
β0

s ) with β0 > 1

(A.2)

ǫc(rs, 1) = − rs + a1r
2
s

b1 + c1rs + d1r2
s + e1r3

s

ln(1 +
1

4
b1Crs + α1r

β1

s ) with β1 > 1

(A.3)

t(rs) = t1rse
−rs/t3 + t2(1 − e−rs/t3)/ ln(1 +

t4
r3
s

) (A.4)

C =

∫∞
0

zv2(z)dz

2π4b2
≈ 4.9348

2π4b2
(A.5)

Equations A.2 and A.3 have a functional form similar to the one previ-

ously chosen in the parameterization of the correlation energy for the unpo-

larized wire.[43]. The second order Pade used in that work is replaced here

with a third order form to allow for a more flexible fit. Notice that the rs

95



dependence of the correlation energy

ǫc(rs, ζ) − ǫc(rs, 0) = ǫx(rs, 0) − ǫx(rs, ζ) = −ζ
2

2

ln rs

rs

+O

(

1

rs

)

. (A.6)

at high density is fulfilled exactly by this functional form (Eq. 5.16), while in

the low density limit these functional forms have the guessed leading order

behavior ( ln rs

rs
).

Eq. A.1 is constructed so that at ζ = 0 and ζ = 1 it reduces to ǫc(rs, 0)

and ǫc(rs, 1) respectively. Furthermore, it allows for the spin dependence to

be interpolated between the discontinuous behavior at small rs and the low

density behavior given by Eq. A.6. This is realized via the inclusion of the

exponential function in the denominator, which accounts also for the abrupt

change of the ζ dependence in the high density limit. Eq. A.4 is derived from

assuming the functional form of Eq. A.1 and requiring the validity of Eq A.6

up to O
(

1
rs

)

.

In the limit of a high density and with ζ 6= 1, t(rs) ∝ rs and the parame-

terization has the following limiting behavior

lim
rs→0

ǫc(rs, ζ) = lim
rs→0

ǫc(rs, 0) − Cr2
sζ

2(1 + ζ2)

= −Cr2
s(2 + ζ2 + ζ4). (A.7)

Around ζ = 0, this is equivalent to the RPA result of Cr2
s(1 + 1

1+ζ2 ).

In the limit of low density, Eq. A.4 is proportional to r3
s , so the RPA

inspired terms in the fit, Cr2
sζ

2(1 + ζ2), cancel exactly and the correlation

energy becomes

lim
rs→∞

ǫc(rs, ζ) = lim
rs→∞

ζ2ǫc(rs, 1) + (1 − ζ2)ǫc(rs, 0))

= −
[

ζ2a1β1

e1
+ (1 − ζ2)

a0β0

e0

]

ln rs

rs
(A.8)

We have assumed in this work that the correlation energy is independent of

the polarization at low density, so this equation is combined with Eq. A.6 to

produce a constraint on the values of the parameters used in the fit:

a0β0

e0
− a1β1

e1
=

1

2
(A.9)
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Therefore, there are a total of 18 free parameters in the fit.

A.1.1 Correlation Functional Fit for b = 1

This section gives the values of the various parameters that are obtained by

fitting the LRDMC values of the correlation energy obtained at 17 different

densities ranging from rs = 0.1 to rs = 50. From rs = 0.1 to rs = 1.5 nine

values of the polarization were used equally spaced from ζ = 0 to ζ = 1. For

rs > 1.5, five polarizations ζ = 0, 1
4
, 1

2
, 3

4
, and 1 were used. These parameters

produce a fit that has a reduced χ2 of 4.3325.

a0 9.63896e-05
b0 30.29814
c0 4.310638
d0 7.698245
e0 0.001316096
α0 0.2004351
β0 4.1671072

Table A.1: Parameter Values for the Fit of ǫc(rs, 0)

a1 1.240455e-10
b1 1046.83128
c1 104.26146
d1 66.70879
e1 0.0825241
α1 162.42691
β1 3.29819

Table A.2: Parameter Values for the Fit of ǫc(rs, 1)

t1 0.9147124
t2 6.777327
t3 0.675004
t4 17.43468

Table A.3: Parameter Values for the Fit of t(rs)

γ 0.8714030

Table A.4: Value of Exponent in Eq. A.1
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A.1.2 Validation of Correlation Functional

Aside from the high quality fit as determined by the reduced chisquared,

it is important to ask if the functional form determined above satisfies the

constraints derived in section 5.1. The correlation energy vs ζ is plotted a

high density in Fig. A.1. This shows hallmarks of the RPA dependence of

the energy on the polarization (Eq. 5.16).
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Figure A.1: Correlation energy ǫc vs the polarization ζ at high density. The
solid line comes from the parameterization while the points come from QMC
calculations.

The situation at low density is not as encouraging. The total energy as a

function of the polarization is plotted in Fig. A.2. Although the QMC calcu-

lations agree with the Lieb-Mattis theorem requiring the total energy to be

a monotonically increasing function of the polarization, the energies derived

from the parameterization do not. This calls into question the validity of the

functional for densities less than rs ≈ 4.
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Figure A.2: Total energy ǫt vs the polarization ζ at low density. The solid
line comes from the parameterization while the points come from QMC cal-
culations.
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A.2 Exchange Correlation Functional

This section presents a parameterization of the exchange correlation energy

that is derived in such a way as to reproduce the low density spin dependence

of the electron gas given in Sec. 5.1.2. This parameterization includes both

the exchange and correlation energies and so there is no need to calculate

Eq. 5.3. This functional form is:

ǫxc(rs, ζ) = ǫconxc (rs, 0) + hz(rs, ζ) − cz(rs, ζ) +
1

1 + et(rs)(1−ζ)γ

[2(a(rs)ζ
2 + (1 − a(rs))ζ

4)(ǫxc(rs, 1) − ǫconxc (rs, 0)) − 2(hz(rs, ζ)− cz(rs, ζ))]

(A.10)

ǫxc(rs, 1) =
a1 + b1rs + c1r

2
s

1 + d1rs + e1r2
s + f1r3

s

+
g1x ln [x+ t1x

u
1 ]

1 + h1r2
s

(A.11)

ǫxc(rs, 0) =
a0 + b0rs + c0r

2
s

1 + d0rs + e0r2
s + f0r3

s

+
g0x ln [x+ t0x

u
0 ]

1 + h0r2
s

(A.12)

ǫconxc (rs, 0) =
ǫxc(rs, 0)

1 + e−
rs−o
rrs

+

(

1 − 1

1 + e−
rs−o
rrs

)

(ǫxc(rs, 1) − ln(2)J(rs) +
π2

16r2
s

)

(A.13)

t(rs) =
t1e

−t2rs

rs
+ t3(1 − e−t2rs) log

(

1 +
e−t4rs

r5
s

)

(A.14)

a(rs) = 1 −
(

p1

rs

+ 1

)

e−p2rs (A.15)

hz(rs, ζ) =
rs log (1 − ζ2)

b2π2
, cz(rs, ζ) = Cr2

s

(

1

1 − ζ2
− 1

)

, (A.16)

where C =
R ∞

0
zv2(z)dz

π4b2
≈ 4.9348

π4b2
and J(rs) = j1

(2rs)1.25 e
−j2

√
2rs At first inspection

this parameterization looks considerably more complex than the correlation

functional of section A.1. However many of these terms are constrained by

theory and the resulting form has only 23 free parameters compared to the

18 in the correlation function parameterization.

The form of Eq. A.10 was chosen to constrain the parameterization to

attain energies determined by the exchange correlation energy from equations

A.13 and A.11. This allows the parameterization to in principle satisfy the

non analytic behavior of the correlation energy at high density. The energy

for ζ = 0 was constrained using the difference between the fully polarized and

unpolarized states of the antiferromagnetic spin chain with coupling constant

J(rs) which is determined using the WKB approximation. This constraint is
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enforced upon the ζ = 0 fit ǫcon
xc because the QMC calculations converge most

rapidly for ζ = 1 and thus it is a natural choice for the reference. Finally

hz(rs, ζ) and cz(rs, ζ) are the high density expansions of the exchange energy

and the RPA correlation energy.

A.2.1 Exchange Correlation Function Fit for b = 1

This section gives the values of the various parameters that are obtained by

fitting the LRDMC values of the exchange correlation energy obtained at 17

different densities ranging from rs = 0.1 to rs = 50 as in section A.1.1. From

rs = 0.1 to rs = 1.5 nine values of the polarization were used equally spaced

from ζ = 0 to ζ = 1. For rs > 1.5, five polarizations ζ = 0, 1
4
, 1

2
, 3

4
, and 1

were used. These parameters produce a fit that has a reduced χ2 of 7.97.

a0 -0.8862269
b0 -0.5599325
c0 -0.5031898
d0 1.03571
e0 0.930169
f0 0.672727
g0 -0.200759
h0 0.722865
t0 0.0897963
u0 3.81785
r 9.39712
o 8.23353

Table A.5: Parameter Values for the Fit of ǫcon
xc (rs, 0)

a1 -0.8862269
b1 -0.3884956
c1 -0.1833389
d1 0.716571
e1 0.400009
f1 0.178259
g1 -0.101321
h1 0.289932
t1 0.0888642
u1 2.96153

Table A.6: Parameter Values for the Fit of ǫxc(rs, 1)
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t1 18.0322
t2 8.67834
t3 0.927153
t4 0.0732567

Table A.7: Parameter Values for the Fit of t(rs)

p1 0.944023
p2 0.192086

Table A.8: Parameter Values for the Fit of a(rs)

j1 184.53
j2 -2.84968

Table A.9: Parameter Values for the Fit of J(rs)

γ 1.82183

Table A.10: Value of the Exponent in Eq. A.10

A.2.2 Validation of Exchange Correlation Functional

As was the case with the correlation functional of section A.1, it is important

to understand the ability of the functional to satisfy the constraints derived

in section 5.1. The exchange correlation energy is plotted at several values

of the density in Fig. A.3.

The exchange correlation energy is in good agreement with the parame-

terization at all densities. However, upon subtracting the exchange energy,

the agreement is not convincing at high densities as shown in figure A.4. For

this reason this functional is recommended only for low densities or if high

densities must be obtained the polarization should be small.

A.3 Exchange Correlation Energies

This section will provide the underlying data that was fit to produce the func-

tionals proposed in the previous sections. In all cases the energy reported is

the exchange correlation energy per electron extrapolated to the thermody-

namic limit. This energy is defined as the total energy from the calculation

minus the contribution of the single particle kinetic energy determined from

101



-0.84

-0.835

-0.83

-0.825

-0.82

-0.815

-0.81

-0.805

-0.8

 0  0.2  0.4  0.6  0.8  1

ε x
c

ζ

rs = 0.1

-0.76

-0.75

-0.74

-0.73

-0.72

-0.71

-0.7

-0.69

-0.68

-0.67

 0  0.2  0.4  0.6  0.8  1

ε x
c

ζ

rs = 0.4

-0.41

-0.405

-0.4

-0.395

-0.39

-0.385

-0.38

-0.375

-0.37

 0  0.2  0.4  0.6  0.8  1

ε x
c

ζ

rs = 4

-0.1636

-0.1634

-0.1632

-0.163

-0.1628

-0.1626

-0.1624

-0.1622

-0.162

-0.1618

 0  0.2  0.4  0.6  0.8  1

ε x
c

ζ

rs = 20

Figure A.3: Exchange Correlation energy ǫxc vs the polarization ζ at high
density. The solid line comes from the parameterization while the points
come from QMC calculations.
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Figure A.4: Correlation energy ǫc vs the polarization ζ at high density. The
solid line comes from the parameterization while the points come from QMC
calculations.

the noninteracting electron gas

ǫxc(rs, ζ) = ǫt(rs, ζ) −
(1 + 3ζ2)π2

48r2
s

(A.17)

The energy is reported in Rydberg with the uncertainty in the value due to

the statistical nature of the Monte Carlo simulations indicated in parenthesis.
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rs ζ = 0 ζ = 0.25 ζ = 0.5 ζ = 0.75 ζ = 1
0.1 -0.804765(12) -0.805401(31) -0.807729(35) -0.813154(33) -0.838308(8)
0.2 -0.752136(39) -0.753397(25) -0.757934(31) -0.768287(33) -0.804550(15)
0.4 -0.675868(51) -0.678375(88) -0.686673(36) -0.704528(53) -0.751223(17)
0.6 -0.621040(61) -0.624448(57) -0.635422(39) -0.658171(50) -0.708706(18)
0.8 -0.579283(49) -0.583094(51) -0.595971(43) -0.621683(89) -0.672996(12)
1.0 -0.546296(49) -0.550512(48) -0.564459(61) -0.591776(62) -0.642186(14)
1.5 -0.488602(37) -0.493120(38) -0.507758(80) -0.535145(85) -0.579987(21)
2.0 -0.452376(31) -0.456625(34) -0.470079(40) -0.49431(11) -0.531848(28)
3.0 -0.407230(30) -0.410357(34) -0.419772(34) -0.436404(36) -0.460531(8)
4.0 -0.374206(34) -0.376233(25) -0.382627(29) -0.393491(30) -0.408946(11)
6.0 -0.320707(16) -0.321747(17) -0.324883(28) -0.330111(16) -0.337458(6)
8.0 -0.279824(8) -0.280427(9) -0.282223(13) -0.285210(25) -0.2894199(57)
10.0 -0.248374(9) -0.248766(7) -0.249936(11) -0.251826(17) -0.2545471(31)
15.0 -0.195149(3) -0.195322(5) -0.195834(7) -0.196689(5) -0.1978972(23)
20.0 -0.161948(2) -0.162046(3) -0.162338(5) -0.162819(3) -0.1634919(18)
35.0 -0.109642(1) -0.109672(1) -0.109768(1) -0.109926(2) -0.1101496(7)
50.0 -0.0842848(8) -0.0842984(5) -0.0843405(8) -0.0844203(6) -0.0845317(5)

Table A.11: Exchange Correlation Energies for b = 1
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[47] W. Häuseler and B. Kramer, Phys. Rev. B 47, 16353 (1996).
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