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Abstract

This thesis research has successfully carried out a QMC study of hydrogen ad-

sorption on Ti-ethylene molecular systems demonstrating reversible hydrogen

adsorption on molecular TiH2C2H4. This system is chosen as representative

of larger carbon-transition-metal systems that may be relevant for practical

hydrogen storage. To the author’s knowledge this is the first study of hydro-

gen adsorption on transition metal systems by QMC methods. These systems

present challenges in terms of a large number of possible molecular structures

that are very close in energy, 3d states of transition elements that are difficult

to treat, and molecular geometries that can be difficult to determine.

Several studies are presented that demonstrate the suitability of QMC meth-

ods for this class of problem. A QMC study of hydrogen on benzene, which has

already been published, tests the Slater-Jastrow (SJ) trial function against a

more highly correlated Geminal trial function. The Slater-Jastrow form used

here is shown to perform equivalently in measuring the small energy differences

associated with physisorption. A series of tests is conducted on the Ti atom

transition energies. QMC SJ results are found to be in excellent agreement

with experiment so that significant cost savings can be achieved by using a

pseudopotential for Ti. An extensive study on the TiH2 system which is rel-

evant to the final system studied is also presented. There a fixed-node DMC

geometry optimization is conducted. It is shown the Perdew-Burke-Ernzerhof

(PBE) functional for Density Functional Theory (DFT) is able to give geome-

tries with energies that are within 1.5 mHa of the DMC optimal geometries.

Also, it is consistently demonstrated throughout the work that QMC methods

with SJ trial functions are only weakly dependent on the single-body theory

used to produce the trial function.

The primary results related to hydrogen storage are derived from studies on

many structures of Ti-ethylene with up to 5 H2 molecules. Ground and excited

states are both considered. Formation energies are calculated and comparison is

made to other work. It is shown that at least three hydrogen molecules can be

adsorbed with energies in the range considered relevant for practical hydrogen

storage.

ii



To Michelle

and our children

iii



Acknowledgments

First I would like to thank the committee members for taking the time to serve

on my committee. I truly appreciate it and know that all of you are very busy

people.

There is no doubt, however, the most important help has been my research

advisor Prof. Richard M. Martin. Prof. Martin (as I most always call him) has

been possibly the most patient person I have personally known. I’m not sure I

could have endured this experience were it not for his exceptional patience and

kindness. I will always appreciate the countless hours he spent working with me

and asking me questions so that I can answer them. I could write pages about

the kindness and hospitality Prof. Martin and his wife have shown me. I thank

them both.

I would also like to thank Jeongnim Kim for all the time she has spent

working with me on several projects. I also want to thank Michele Casula for

all that he has done in helping me with my thesis research. Also, I would like

to thank all the members of our group for making work the pleasant experience

that it has been.

I also want to thank my beautiful wife who has given me the love and support

to see this ordeal through to the end. She alone knows what I’ve went through,

the struggles, challenges, and victories. Not only that, the Lord has given us

two wonderful boys who have added untold joy to both our lives. Matthew and

Michael, I love you. My wife and I are in this together and she has made many

sacrifices, some of which I need to remind myself of from time to time - our

marriage is not just about me it is about us. In many ways our lives have been

on hold for seven years, not just mine but hers too. She doesn’t know how much

I appreciate and love her.

Most importantly I will thank and acknowledge my Lord and Savior Je-

sus Christ in giving me the wherewithal and strength to complete this thesis

research. I would not have wanted to do it without Him.

This work was supported by the Materials Computation Center at the Uni-

versity of Illinois under NSF grant DMR- 0325939, the U.S. Army MURI grant

A6062 UMC00005071-3 and NSF grant DMR04-04853. Calculations were done

at the National Center for Supercomputing Applications (NCSA) and Compu-

tational Science and Engineering (CSE) facilities at Illinois and resources of the

iv



National Center for Computational Sciences at Oak Ridge National Laboratory,

which is supported by the Office of Science of the U.S. Department of Energy

under Contract No. WE-AC05-00OR22725.

v



Table of Contents

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . xvi

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Hydrogen Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Physical Mechanisms of Hydrogen Sorption and some Related

Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Motivation for using Quantum Monte Carlo Methods . . . . . . . 4
1.4 Systems Studied Here . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Chapter 2 Single-Body Methods . . . . . . . . . . . . . . . . . . 9

2.1 Slater Determinant Wave Function . . . . . . . . . . . . . . . . . 9
2.2 Density Functional Theory . . . . . . . . . . . . . . . . . . . . . 11
2.3 Basis Set Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Chapter 3 Deterministic Many-Body Methods . . . . . . . . . 14

3.1 Configuration Interaction . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Coupled Cluster Methods . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Møller-Plesset Second Order Perturbation Theory . . . . . . . . . 15

Chapter 4 Monte Carlo Many-Body Methods . . . . . . . . . . 16

4.1 Variational Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . 16
4.2 Diffusion Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3 Lattice regularized diffusion Monte Carlo (LRDMC) . . . . . . . 20
4.4 Pseudopotentials . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.5 B-spline Grid Transformations . . . . . . . . . . . . . . . . . . . 23

Chapter 5 Correlated Wave Functions . . . . . . . . . . . . . . 24

5.1 The Jastrow Factor . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.2 Cusp conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.3 Jastrow correlated Antisymmetric Geminal Power (JAGP) . . . . 27

Chapter 6 Hydrogen . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 31

vi



Chapter 7 Hydrogen on Benzene . . . . . . . . . . . . . . . . . 36

7.1 Computational details . . . . . . . . . . . . . . . . . . . . . . . . 37
7.1.1 Slater-Jastrow trial function . . . . . . . . . . . . . . . . . 37
7.1.2 JAGP function . . . . . . . . . . . . . . . . . . . . . . . . 38
7.1.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

7.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
7.2.1 Jastrow correlated Antisymmetric Geminal Power . . . . 41
7.2.2 Slater-Jastrow Trial Function . . . . . . . . . . . . . . . . 43

7.3 Comparison to other work . . . . . . . . . . . . . . . . . . . . . . 44
7.4 Analysis of the bonding . . . . . . . . . . . . . . . . . . . . . . . 46
7.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Chapter 8 Atomic Titanium . . . . . . . . . . . . . . . . . . . . 50

8.1 Angular momentum and spin states of atomic Ti . . . . . . . . . 51
8.1.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
8.1.2 Real Atomic Orbitals . . . . . . . . . . . . . . . . . . . . 54

8.2 QMC methods and dependence on the trial function . . . . . . . 54
8.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
8.4 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . 56

Chapter 9 Titanium Dihydride . . . . . . . . . . . . . . . . . . . 59

9.1 Motivation for TiH2 . . . . . . . . . . . . . . . . . . . . . . . . . 59
9.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

9.2.1 Experimental studies . . . . . . . . . . . . . . . . . . . . . 60
9.2.2 Previous theoretical work . . . . . . . . . . . . . . . . . . 60

9.3 Nature of the electronic states of TiH2 . . . . . . . . . . . . . . . 62
9.3.1 Symmetry of TiH2 . . . . . . . . . . . . . . . . . . . . . . 62
9.3.2 Bonding and d−states in TiH2 . . . . . . . . . . . . . . . 64
9.3.3 d−state occupation in TiH2 . . . . . . . . . . . . . . . . . 64
9.3.4 Approaching linear TiH2 . . . . . . . . . . . . . . . . . . . 64

9.4 Single-Body Methods used for TiH2 . . . . . . . . . . . . . . . . 67
9.5 DMC Geometry Optimization of TiH2 . . . . . . . . . . . . . . . 70
9.6 Calculation Details . . . . . . . . . . . . . . . . . . . . . . . . . . 71
9.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
9.8 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . 73

Chapter 10 Hydrogen on Titanium-Ethylene . . . . . . . . . . 79

10.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
10.1.1 Experimental Work . . . . . . . . . . . . . . . . . . . . . 80
10.1.2 Theoretical Work . . . . . . . . . . . . . . . . . . . . . . . 80

10.2 Bonding Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . 81
10.3 Methods for Hydrogen on Ti-ethylene systems . . . . . . . . . . . 82
10.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
10.5 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . 86

Chapter 11 Conclusion . . . . . . . . . . . . . . . . . . . . . . . 91

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

vii



List of Tables

7.1 LRDMC binding energy (E(R = 6)−E(R = 15)) dependence on
mesh size a. The energies are reported in mHa, the lengths are
in Bohr. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

7.2 Fitting parameters of the Morse function (see Eqn. 7.3) which
minimize the χ2 of the JAGP-LRDMC and SJ-DMC data sets.
Their error is computed by means of a Bayesian analysis based on
the statistical distribution of the FN energy points. The energies
are reported in mHa, the lengths are in Bohr. . . . . . . . . . . . 43

7.3 Slater-Jastrow trial function DMC binding energy (E(R = 6) −
E(R = 15)) dependence on time step τ . The energy extrapolated
for τ → 0 is within one error bar from the point at τ = 0.01.
Therefore, we chose τ = 0.01 as the time step for all our DMC
simulations. The energies are reported in mHa, the time steps
are in Ha−1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

8.1 L and ML for several two-body states. . . . . . . . . . . . . . . . 53
8.2 Results for atomic Ti for PBE-DFT and ROHF with BFD pseu-

dopotential. While the electron configuration given makes refer-
ence to the Argon configuration, it is understood that only the Ne
core states are accounted for through the pseudopotential. Com-
parisons are made for truncated 3- and 4-zeta basis sets from
BFD and are referenced in the main text. . . . . . . . . . . . . . 56

8.3 Transition energies for atomic Ti for PBE-DFT and ROHF with
BFD pseudopotential. Experimental numbers are included for
reference. Comparisons are made for truncated 3- and 4-zeta
basis sets from BFD and are referenced in the main text. Of
particular note is that PBE-DFT gets the wrong ground state. . 57

8.4 Results for atomic Ti for DMC using PBE-DFT and ROHF sin-
gle body orbitals in the Slater-Jastrow trial function. The results
given are for time step τ=0.01. Again, the BFD pseudopoten-
tial is used. The electron configuration given makes reference to
the Argon configuration with the understanding that only the Ne
core states are accounted for through the pseudopotential. Com-
parisons are made for BFD truncated 3- and 4-zeta basis (details
are referenced in the main text). . . . . . . . . . . . . . . . . . . 57

8.5 DMC time-step convergence data for transition energies of atomic
Ti. The DMC Slater-Jastrow trial function uses single-body or-
bitals from PBE-DFT and ROHF with 3- and 4-zeta BFD basis
sets that have been truncated to include orbitals no higher than d. 58

viii



8.6 DMC time-step converged results for transition energies of atomic
Ti. The DMC Slater-Jastrow trial function uses single-body or-
bitals from PBE-DFT and ROHF with truncated 3- and 4-zeta
BFD basis sets respectively. Similar results are found for both
ROHF and PBE trial functions and basis set dependence is small. 58

9.1 Wave function symmetries for the C2v point group. The TiH2 at
left indicates the molecular orientations with respect to the states
and the vertical and horizontal lines in the sign tables indicate
the σv and σ′

v mirror symmetry planes respectively with the point
of intersection corresponding to the C2 rotation symmetry axis.
The A−states (A1, A2) are symmetric under rotation about the
C2 axis while the B−states are antisymmetric. The 1−states (A1,
B1) are symmetric under mirroring about the σv plane while the
2−states are antisymmetric. . . . . . . . . . . . . . . . . . . . . . 63

9.2 C2v symmetry multiplication table. . . . . . . . . . . . . . . . . . 63
9.3 Favorable d-state occupations for TiH2. Give five d-states there

are 10 possible occupations of two of those states. However, be-
cause the d-state with B2 symmetry participates in the bonding
of the hydrogen atoms, only four states remain to occupy the un-
paired states. This allows for the 6 possible favorable occupations
listed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

9.4 This table presents how single d−states with C2v symmetry trans-
form under rotations about the limiting linear TiH2 molecular
axis (C∞ axis for D∞h symmetry). The A1, B1, A2, B2 states
are the usual C2v states of bent TiH2, however, the m−values are
those where the z−axis is aligned to the C∞ axis of the linear
molecule. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

9.5 This table presents how two d−states with C2v symmetry trans-
form under rotations about the limiting linear TiH2 molecular
axis (C∞ axis for D∞h symmetry). The A1, B1, A2, B2 states
are the usual C2v states of bent TiH2, however, the m−values are
those where the z−axis is aligned to the C∞ axis of the linear
molecule. The overall wave function symmetry can be seen to be
the product of the symmetries of the two unpaired d−states (see
Table 9.2 above). . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

9.6 Relative PBE-DFT energy of the lowest state for each spin with
respect to the triplet state. . . . . . . . . . . . . . . . . . . . . . 72

9.7 Optimal geometry and energies for in PBE-DFT and DMC with
PBE-DFT trial functions. The d-state symmetries are those of
the unpaired d-orbitals. It can be seen that these symmetries
result in the overall wave function symmetry using Tab. 9.2.
Energies and bond lengths are in atomic units while the bond
angles are in degrees. It should be noted that all of the geometries
are similar, around 120◦ and 3.3 Bohr. The optimal energies of
the two lowest states, 3A1 and 3B1, are less than 1.6 mHa apart. 72

9.8 Optimal DMC geometry and energies for 3A1,
3B1 and 3A2. See

Sec. 9.5 for a description of the method used to derive this data. 73

ix



10.1 Summary of PBE-DFT energies for all the systems studied. En-
ergies in PBE-DFT for ethylene and various complexes of Ti and
ethylene with and without additional hydrogen. Energies are
given in Ha and PBE-DFT ground states are indicated in bold.
Comparison is made between the different spin states with the
symmetry of the state noted. The symmetry used was that found
to be lowest for the given spin state. In all cases the molecular
symmetry is that of the C2v point group except for ethylene,
Ti and H2. Geometries are optimized individually for each sys-
tem and state indicated. Triple zeta basis sets are used with
aug-cc-pVTZ for hydrogen and BFD VTZ-ANO for carbon and
titanium. Pseudopotentials from BFD are used for carbon and
titanium while the standard Coulomb potential is used for hy-
drogen. Note that PBE-DFT incorrectly finds the ground state
of Ti as 5F. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

10.2 Average formation energy per H2 molecule for adsorption on
TiH2C2H4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

10.3 Bond length data. All bond lengths are in angstroms. The
(side/top) notation refers to the [a] and [b] geometries used for
TiH2C2H4·2H2 and ·3H2. Images of these structures can be seen
at the end of this chapter in Fig. 10.5. . . . . . . . . . . . . . . . 87

10.4 The above table presents DMC convergence data for the various
systems and spin states that are used in this study. The PBE-
DFT results for the same systems can be found in Tab. 10.1. All
energies are given in Ha and the DMC fixed-node ground state en-
ergies for our trial functions are indicated in bold. The symmetry
state used is that found to be most favorable in PBE-DFT with
geometry optimization. In all cases the triple zeta basis was used
with aug-cc-pVTZ for hydrogen and BFD VTZ-ANO for carbon
and titanium in the PBE-DFT calculations. The DMC results
are for Slater-Jastrow trial function constructed from the single-
body orbitals derived from the PBE-DFT calculations and Jas-
trow employing electron-ion and electron-electron terms. Pseu-
dopotentials from BFD are used for carbon and titanium while
the standard Coulomb potential is used for hydrogen. Conver-
gence is tested at time-steps τ=0.04, 0.02, 0.01 and found to be
converged at between τ=0.2 amd τ=0.1. . . . . . . . . . . . . . . 88

10.5 Formation energies in PBE-DFT and DMC for the various reac-
tions are given in mHa. Negative values indicate the reaction is
exothermic. Note that the hook-arrows represent transition from
the above state/geometry to a new geometry (indicated as [a] or
[b]). Calculations are based on results from Table 10.4. Reac-
tions (a) through (g) are transitions between the various ground
states found in DMC with PBE-DFT optimized geometries. In
particular, all structures are spin 0 except for atomic Ti, TiH2,
and TiC2H4 which are spin 1. It should be noted that reaction
(a)+(c) is identical to reaction (b)+(d), only the reaction path
is different. Also, the formation energies given for reactions (e)
and (i) are the average per H2 when two hydrogen molecules are
added. Reactions (h) through (k) are transitions between triplet
states. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

x



List of Figures

1.1 σ-Bond donor-acceptor bonding mechanism. Here, TM indicates
a transition metal. The bond is stabilized by the interaction
between the metal d-states and the H2 σ-states. Specifically,
the occupied σ-states donate to the unoccupied TM d∗-states
while the occupied TM d-states back-donate to the unoccupied
σ∗-states respectively. . . . . . . . . . . . . . . . . . . . . . . . . 3

6.1 Both figures above show the ideal Jastrow for atomic hydrogen
when the trial function is derived from PBE-DFT. A Slater-
Jastrow composed of the PBE-DFT single-body orbital and the
above Jastrow results in the exact solution for atomic hydrogen.
The top figure (a) shows the long range behavior while the bot-
tom figure (b) shows the cusp and short range behavior. The
basis sets used are aug-cc-pVTZ and aug-cc-pVQZ indicated by
red and blue respectively. . . . . . . . . . . . . . . . . . . . . . . 33

6.2 Both figures above show the potential energy curve of H2 with
respect to bond length. Red and blue correspond to aug-cc-pVTZ
and aug-cc-pVQZ respectively. (a) Shows the PBE-DFT results
while (b) shows the HF results. . . . . . . . . . . . . . . . . . . . 34

6.3 DMC potential energy surface using a PBE-DFT trial function
with B-spline Jastrow for both one- and two-body terms. Both
Jastrows use a an 8 Bohr cutoff and 0.5 Bohr resolution. The
one-body Jastrows has an additional short range Jastrow with
0.6 Bohr cutoff and 0.1 Bohr resolution. . . . . . . . . . . . . . . 35

7.1 Standard picture describing the resonating valence bond in ben-
zene. This can be understood as benzene being in a superposition
of two competing stable bond configurations. . . . . . . . . . . . 36

7.2 QMC results for the dispersion energy of the hydrogen-benzene
bond as a function of intermolecular distance R with zero energy
difference taken at R = 15 Bohr. (a) Compare variational and
the diffusion results using the correlated geminal wave function,
labeled JAGP-VMC and JAGP-LRDMC. (b) Compares diffusion
results using two types of trial functions, the JAGP (the same
as in Fig. a) and the Slater-Jastrow function labeled SJ-DMC.
Morse fits of the diffusion data for the two wave functions are
also plotted as continuous curves. The close agreement of all
three results is strong evidence that the binding curve is accurate
and the analytic JAGP function is a reliable representation of the
fully correlated many-body valence wave function. . . . . . . . . 43

xi



7.3 Results for hydrogen-benzene binding as a function of intermolec-
ular distance R using four theoretical methods. The JAGP-
LRDMC data and Morse fit with zero binding energy taken at
R = 15 Bohr is shown in solid black. The PBE-DFT counterpoise
corrected result using the VTZ basis plus diffuse functions from
the aug-cc-pVTZ basis is shown in solid green. The Crowell and
Brown empirical potential (shallowest) that takes into account
the bond asymmetry of the sp2 hybridized carbon atom is shown
in dotted blue. The Mattera et al. empirical potential that seeks
to reproduce the hydrogen bound states over graphite by a much
simpler model is shown in dotted red. . . . . . . . . . . . . . . . 45

7.4 Contour plots of the difference in projected electronic charge per
unit area between hydrogen-benzene separated by 6 Bohr and the
isolated hydrogen and benzene using JAGP-LRDMC and PBE-
DFT. The x-axis has been integrated over so that the charge per
unit area has been projected into the yz-plane. (Left) The areal
charge density difference is a mixed estimate of LRDMC calcula-
tions with a JAGP trial wave function. (Right) Computation is
done within the PBE-DFT framework using the VTZ basis plus
diffuse functions from the aug-cc-pVTZ basis. . . . . . . . . . . . 48

7.5 Difference in linear electronic charge density between hydrogen-
benzene separated by 6 Bohr and the isolated hydrogen and ben-
zene using three theories. The x- and y-axes have been integrated
over so that the charge per unit length has been projected into
the z-axis. The solid red data with error bars show the induced
charge changes using the analytic JAGP wave function at the
VMC level. The dotted blue data with error bars show the mixed
estimate of the density given by the LRDMC projection of the
JAGP trial wave function. The dotted green line shows the PBE-
DFT result using the VTZ basis plus diffuse functions from the
aug-cc-pVTZ basis. . . . . . . . . . . . . . . . . . . . . . . . . . . 49

9.1 The above figure indicates the C2v symmetry operations and their
relationship to TiH2. The C2 axis indicates a two-fold rotational
symmetry, the σv and σ′

v planes indicate planes of mirror symmetry. 62
9.2 Real spherical harmonics for d-states. For reference, the TiH2

molecule is aligned on the yz-plane with its C2 axis aligned to
the z-axis. The conventional m value for the real functions are:
(a) m = 0 (b) m = 1 (c) m = −1 (d) m = 2 (e) m = −2. . . . . . 63

xii



9.3 Four highest HOMO states of TiH2 in energy order. Blue and red
contrast positive and negative regions respectively. Specifically,
these are slices of the molecular orbitals where the molecular
plane is identical to the slice plane in Figures (a) and (b). These
single-body molecular orbitals were derived from the ground-state
PBE-DFT calculations with a 4-zeta basis and BFD pseudopo-
tential for Ti. (a) Top-left. Shows a Ti 4s−state hybridized into
a σ−bond state where the 4s−orbital node is pinched. The state
is spin paired with A1 symmetry. (b) Top-right. Shows a Ti
3d−state, normally associated with m = ±1 with respect to the
linear molecule axis (if the bond were opened up to 180◦), hy-
bridized into the other σ−bond state through exaggeration/sup-
pression of the Ti d−orbital lobes. The state is spin paired with
B2 symmetry. (c) Bottom-left. Is an unpaired molecular orbital
with B1 symmetry and similar to an atomic 3d−state of Ti with
m = ±2 relative to the linear molecule axis. (d) Bottom-right.
Is the other unpaired molecular orbital but with A1 symmetry
and similar to an atomic 3d−state of Ti with m = 0 relative to
the linear molecule axis (if the bond were opened up to 180◦). . 65

9.4 Three lowest LUMO states of TiH2 in energy order. Blue and red
contrast positive and negative regions respectively. Specifically,
these are slices of the molecular orbitals where TiH2 is oriented
identical to Fig. 9.3. The states are derived from the same calcu-
lations as in Fig. 9.3 as well. (a) Top-left. Shows an unoccupied
molecular orbital with A1 symmetry and similar to an atomic
3d−state of Ti with m = ±2 relative to the linear molecule axis.
(b) Top-right. Shows an unoccupied molecular orbital with A2

symmetry and similar to an atomic 3d−state of Ti with m = ±1
relative to the linear molecule axis. (c) Bottom. This state is sig-
nificant in that it shows an atomic-like d−state hybridized into
an anti-bonding σ∗−state with B2 symmetry. . . . . . . . . . . . 66

9.5 Pictured above is an example of a quadratic surface fit to 9 points.
Namely, for each bond angle 110◦, 135◦, 160◦ bond lengths 3.0,
3.3 and 3.6 Bohr bond lengths are studied. This results in a
function E(θ, r) satisfying E(θi, ri) = Ei for i = 1..9 that can be
minimized. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

9.6 PBE-DFT optimal energy results for the TiH2 singlet states with
respect to bond angle. For each bond angle, the optimal energy
is given for the state found. These calculations were done with a
BFD Ti 4-zeta basis and pseudopotential while hydrogen uses a
Coulomb potential and aug-cc-pVQZ basis. The optimal singlet
state is found to be 1A1 with geometry 120.226◦ and 3.290 Bohr
bond length. The optimal energy is -59.37091 Ha which is found
to be 14.03 mHa higher than the PBE-DFT triplet ground state. 74

9.7 PBE-DFT optimal energy results for the TiH2 quintuplet states
with respect to bond angle. For each bond angle, the optimal
energy is given for the state found. These calculations were done
with a BFD Ti 4-zeta basis and pseudopotential while hydrogen
uses a Coulomb potential and aug-cc-pVQZ basis. The optimal
quintuplet state is found to have a linear geometry with bond
length of 3.534 Bohr. The optimal energy is -59.29791 Ha which is
found to be 87.03 mHa higher than the PBE-DFT triplet ground
state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

xiii



9.8 PBE-DFT optimal energy results for the TiH2 triplet states with
respect to bond angle. For each bond angle, the optimal energy
is given for the state found. The optimal bond length for each
state and angle can be found in Fig. 9.9. These calculations
were done with a BFD Ti 4-zeta basis and pseudopotential while
hydrogen uses a Coulomb potential and aug-cc-pVQZ basis. The
optimal triplet state is found to be 3B1 with geometry 119.1401◦

and 3.3080 Bohr bond length. The optimal energy is -59.38494
and is ground state. . . . . . . . . . . . . . . . . . . . . . . . . . 75

9.9 PBE-DFT optimal bond length results for the TiH2 triplet states
with respect to bond angle. For each bond angle, the optimal
bond length is given for the state found. The associated opti-
mal energy for each state and angle can be found in Fig. 9.8.
These calculations were done with a BFD Ti 4-zeta basis and
pseudopotential while hydrogen uses a Coulomb potential and
aug-cc-pVQZ basis. . . . . . . . . . . . . . . . . . . . . . . . . . . 76

9.10 UHF optimal energy results for the TiH2 triplet states with re-
spect to bond angle. For each bond angle, the optimal energy
is given for the state found. The optimal bond length for each
state and angle can be found in Fig. 9.11. These calculations
were done with a BFD Ti 4-zeta basis and pseudopotential while
hydrogen uses a Coulomb potential and aug-cc-pVQZ basis. The
optimal UHF triplet state is found to be linear. . . . . . . . . . . 76

9.11 UHF optimal bond length results for the TiH2 triplet states with
respect to bond angle. For each bond angle, the optimal bond
length is given for the state found. The associated optimal energy
for each state and angle can be found in Fig. 9.10. These calcula-
tions were done with a BFD Ti 4-zeta basis and pseudopotential
while hydrogen uses a Coulomb potential and aug-cc-pVQZ basis. 77

9.12 DMC results for Slater-Jastrow trial function with PBE-DFT
single-body orbitals. The curves are the result of a quadratic sur-
face fit for nine points on a configuration space grid as described
in Sec. 9.5. The thickness of the plot lines are indicative of the
error bars. All calculations employed the BFD Ti pseudopoten-
tial and H Coulomb potential. The basis sets used in PBE-DFT
were the BFD 4-zeta basis for Ti and the aug-cc-pVQZ basis
for hydrogen. Radial functions were transformed to a B-spline
grid for the QMC calculations. Optimal energy and geometry for
the 3A1 state is -59.3326(3) Ha with bond 135.2(5)◦ and 3.381(4)
Bohr while the optimal 3B1 structure is -59.3324(3) Ha with bond
133.5(6)◦ and 3.384(4) Bohr. While the lowest state is found to
be 3A1, the energies are within the error bars. . . . . . . . . . . . 77

xiv



9.13 DMC results for Slater-Jastrow trial function with UHF single-
body orbitals. The curves are the result of a quadratic surface
fit for nine points on a configuration space grid as described in
Sec. 9.5. The thickness of the plot lines are indicative of the
error bars. All calculations employed the BFD Ti pseudopotential
and H Coulomb potential. The basis sets used in UHF were the
BFD 4-zeta basis for Ti and the aug-cc-pVQZ basis for hydrogen.
Radial functions were transformed to a B-spline grid for the QMC
calculations. Optimal energy and geometry for the 3A1 state is
-59.3318(2) Ha with bond 145.3(1.0)◦ and 3.438(5) Bohr while
the optimal 3B1 structure is -59.3323(2) Ha with bond 142.9(9)◦

and 3.418(5) Bohr. While the lowest state is found to be 3B1,
error bars are almost touching. . . . . . . . . . . . . . . . . . . . 78

10.1 This figure is replicated from the Durgun et al., 2006. The atoms
are color coded such that blue, cyan, red indicate atoms Ti, C,
H respectively. (a) Shows Ti-C60 with a hydrogen about the
Ti atom. (b) Shows the local Ti-C60 structure. (c) Shows the
analogous TiH2C2H4·3H2. . . . . . . . . . . . . . . . . . . . . . . 79

10.2 Schematic diagrams of the donor-acceptor model for σ- and π-
bonding involving transition metals (M). Orbitals with an astrisk
(*) indicate virtual or unoccupied orbitals. These bonding mech-
anisms work very similarly. The σ- and π-orbitals donate charge
to the unoccupied d∗-orbital of the M while the occupied d-orbital
of the M back-donates charge to unoccupied σ∗- and π∗-orbitals
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

10.3 Level diagram of transitions forming TiH2C2H4. . . . . . . . . . 87
10.4 Level diagram of transitions involving adsorption and changes in

geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
10.5 Above are the molecular structures and complexes studied. The

atoms are colored such that blue, cyan, red correspond to Ti,
C and H respectively. Careful distinction is made for the ori-
entation of the side adsorbed hydrogen atoms in figures (e)-(h).
When oriented vertically the geometry is denoted by an [a] while
a horizontal orientation is given by [b]. . . . . . . . . . . . . . . . 90

xv



List of Abbreviations

AGP Antisymmetric Geminal Power

BFD M. Burkatzki, Claudia Filippi, M. Dolg

BSSE Basis Set Superposition Error

SA-CASSCF State Averaged Complete Active Space Self Consistent Field
theory

CCSD Coupled Cluster Singles Doubles

CCSD(T) CCSD with Triples added using perturbation theory

CG Conjugate Gradient

CI Configuration Interaction

CISD Configuration Interaction Singles Doubles

DFT Density Functional Theory

DMC Diffusion Monte Carlo

ECP Effective Core Potentials

FN Fixed Node

GGA Generalized Gradient Approximation

GTO Gaussian Type Orbital

HF Hartree Fock

HS Hydrogen Storage

JAGP Jastrow correlated Antisymmetric Geminal Power

LDA Local Density Approximation

LRDMC Lattice Regularized Diffusion Monte Carlo

MC Monte Carlo

MP2 Møller-Plesset Second Order Perturbation Theory

MRCI Multi-Reference Configuration Interaction

NCPP Norm Conserving Pseudopotentials

PBE Perdew-Burke-Ernzerhof

xvi



QMC Quantum Monte Carlo

ROHF Restricted Open-shell Hartree-Fock

SJ Slater-Jastrow

TM Transition Metal

VdW van der Waals

VMC Variational Monte Carlo

xvii



Chapter 1

Introduction

1.1 Hydrogen Storage

Research on hydrogen storage systems is timely given the increasingly urgent

calls for practical solutions to our energy and environmental problems however,

the phenomenon is by no means new. Storing hydrogen in a form other than gas

has a long history that starts with Graham’s discovery of reversible hydriding in

palladium in 1866.[1] Hydrogen was not liquefied until 1898 by James Dewar.[2]

Since that time a great deal of study has gone into this subject. Systems such

as metal hydrides [3] and complex hydrides [4, 5, 6, 7] have been the source

of a great deal of research that continues to this day. More recently, materials

such as carbon nanotubes [8], fullerenes [9], metal-organic-frameworks (MOF)

[10, 11, 12], and others have been studied.

While many materials have some capacity to store hydrogen reversibly, how-

ever small, it is important to quantify what makes a practical hydrogen storage

material. The United States Department of Energy has developed a multi-year

plan with a set of goals that can result in practical hydrogen storage for a num-

ber of applications.[13] In order to meet the plan’s time line, by 2010 a material

should be found that is able to store hydrogen at ∼ 6 wt%, this includes the

weight of the tank, storage media and related equipment. This level of hydrogen

storage capacity corresponds to about half the hydrogen content of water. The

storage should be reversible between -20 to 50◦C, stable to ∼ 1000 cycles, and

have good uptake at 100 atm along with some other detailed considerations.

Ultimately, the plan calls for even higher storage capacities and better ther-

mal properties. While many solutions to this problem have been offered, none

satisfies all these constraints.

Reversible adsorption at room temperature is indicative of a binding energy

of between 7 and 15 mHa/H2 due to thermodynamic constraints. [11] Bind-

ing that is significantly greater will result in irreversible storage while weaker

binding will result in poor uptake especially toward the higher temperatures.

Additionally, this range of energetics is indicative of hydrogen binding that likely

does not break the H-H bond, hence hydrogen binding is often referred to as

adsorption or physisorption. This type of bonding is in contrast higher energy

binding, sometimes referred to as chemisorption, where cleavage of the hydro-
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gen bond occurs. Further, this energy scale is also suggestive of the physical

mechanisms that might be required.

This work will strive toward studying systems where the bonding energet-

ics is in a range compatible with the above constraints. The choice of systems

one studies should thus have the correct bonding mechanisms so that such en-

ergetics can at least possibly be achieved. While there are generally several

bonding mechanisms simultaneously at work in any system, one should con-

sider chiefly those that are dominant. It will prove to be insightful to consider

the main bonding mechanisms that can be at work. Namely, dispersion forces,

electrostatic forces, and forces due to donor-acceptor physics.

1.2 Physical Mechanisms of Hydrogen

Sorption and some Related Materials

A possible means of storing hydrogen can involve breaking the H2 bond. While

breaking this bond is often associated with strongly exothermic reactions, it

need not be. In fact, there are classes of chemical reactions that break the H-H

bond and yet have energetics suitable for reversible storage. Metal hydrides

and complex metal hydrides have been pursued for a long time to this end. As

far back as the 1970s, experimental vehicles have been powered by hydrogen

stored in metal hydride systems. For example, titanium iron hydride was used

but proved to be impractical for a number of reasons.[3] Among the challenges

facing these systems are mass and thermal transfer issues and stability under

cycling. Hydrogen that is stored by way of chemical reaction is often referred to

as a chemisorption process; and while they are worthy of further pursuit, this

work focuses on alternative mechanisms that might sidestep some of the above

difficulties that result from breaking hydrogen’s bond.

There are also possible mechanisms that bond hydrogen without breaking

the H-H bond. However, some of these can result in a bond strength that is not

sufficiently strong to bond hydrogen at ambient temperatures. Weak binding

involving hydrogen can result from several mechanisms. Dispersion forces, also

referred to as van der Waals forces, can result in weak binding due to the charge

polarization fluctuations in interacting systems. The potential of these forces

goes as −1/r6 in the region of non-overlap. Such forces typically result in binding

energies on the order of ∼1 mHa. Electrostatic forces can also play a role in

binding hydrogen. H2 carries a quadrapole moment of 22.1x10−40 Cm2 that

can weakly interact with other charges resulting in a potential that falls off as

−1/r3. Such forces can result in binding energetics on the order of between ∼1-2

mHa. Additionally, hydrogen can interact by way of a charge induced dipole

interactions that fall off as −1/r3. Since H2 has a polarizability 8.79x10−41

C2m2J−1 these forces can bind with energies on the order of ∼2-3 mHa. In a

general sense, these interactions alone will not achieve the energies necessary
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for adsorption. Using E = kBT , 1 mHa corresponds approximately to 300K

(room temperature). This sort of bonding is often referred to physisorption and

typically results in stability only at low (cryogenic) temperatures. Examples of

these kind of systems are pure carbon systems like graphene, carbon nanotubes

and fullerenes.[8, 9]

In 1983, Kubas discovered a new type of chemical bonding that results in

the stable coordination of an essentially intact molecule of hydrogen.[14] In this

bonding mechanism, Donor-acceptor interactions occurring between the d-states

of a transition metal (TM) and σ-state of H2 can result in hydrogen bonding

with properties that are particularly desirable where hydrogen storage is con-

cerned. This type of hydrogen bonding is sometimes referred to as a σ-complex

or a Kubas complex. Rather than acting like a physisorption mechanism, this

type of bonding involves the occupied H2 σ-states donating to the unoccupied

TM d-states while the occupied TM d-states back-donate to the unoccupied H2

σ∗-states as shown in Fig. 1.1. It was originally thought that such mechanisms

Figure 1.1: σ-Bond donor-acceptor bonding mechanism. Here, TM indicates a
transition metal. The bond is stabilized by the interaction between the metal
d-states and the H2 σ-states. Specifically, the occupied σ-states donate to the
unoccupied TM d∗-states while the occupied TM d-states back-donate to the
unoccupied σ∗-states respectively.

occurred only as an intermediate state in the chemisorption process of breaking

the hydrogen bond. However, the seminal discovery of Kubas in 1983 showed

that this kind of bonding can result in stable adsorption of intact hydrogen

molecules. Furthermore, this type of non-classical binding is complementary to

π-complex non-classical bonding model, originally put forward by Dewar-Chatt-

Duncanson more than 50 years ago.[15] As it turns out, this kind of bonding

is highly suitable for reversible hydrogen storage at room temperature almost

by definition and in fact can result in the correct energetics for this to occur.

It should be noted that if the back donation is too strong then the H-H bond

breaks resulting in chemisorption and the donor-acceptor mechanism becomes

an intermediate process. To garner this interaction for practical hydrogen stor-

age candidate systems must be carefully studied so that the energetics and other

properties of the system are properly tuned.
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1.3 Motivation for using Quantum Monte

Carlo Methods

Quantum Monte Carlo (QMC) methods have been successfully applied to a

variety of systems where electron correlations play an important role. Other

investigators have successfully treated systems such as high pressure hydrogen

and transition metals with excellent results. Historically, systems that involve

adsorption of hydrogen, which is the focus here, are treated with methods such

as Hartree-Fock, Density Functional Theory (DFT), or other higher level deter-

ministic theories such as Configuration Interaction (CI) or Couple Cluster (CC)

methods. Monte Carlo methods address many of the short comings of these var-

ious methods while providing high accuracy in a broad variety of circumstances.

To our knowledge, QMC has not been used to study hydrogen adsorption on

transition metals.

A number of standard methods are typically applied to molecular systems.

While these methods have proven to be invaluable, they are limited and don’t

always provide as good of results as one would like. The Hartree-Fock method

has been applied to systems of interest here; however, it is not able to address

cases where electron correlations are more dominant such as those involving

transition metals or van der Waals forces. Post Hartree-Fock methods such as

DFT have been widely applied to virtually any kind of system you can think

of; however, the accuracy of the results is not always clear and often require

accurate theories to validate results. The DFT methods allow for a lot of ver-

satility through the use of different functionals that are designed for a specific

class of applications. As an example, the Local Density Approximation (LDA)

functional is best suited for metallic systems that more closely approximate the

electron gas. Even so, it is not always clear how good the results will be. A

number of highly accurate methods are also applied such as Configuration In-

teraction methods and Coupled Cluster Methods. However, these methods are

limited in their use to smaller systems due to poor scaling that is at least O(N6)

and even O(N !) in the number of electrons N .

The QMC methods that are used here offer some genuine advantages over the

methods listed above but fundamentally differ in that they rely on stochastic

sampling processes to solve the Schrödinger equation. The Variational and

Diffusion Monte Carlo (VMC and DMC) methods allow the investigator to

leverage the single-body methods which are generally easier and less expensive

to use so that accuracy comparable to CCSD(T) can be obtained, but with

O(N3) scaling which is suitable for larger systems. However, QMC methods

present their own challenges, some of which are common to virtually all methods.

For example, measuring small energy differences in QMC can be difficult due

to the inherent noise of the sampling process and other factors. Further, in

order to reduce noise and cost, effective core potentials (ECP), also referred

to as pseudopotentials (PP), can be used. The use of PPs allow atomic core
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electrons to be replaced by a potential so that the number of electrons and

the energy scale of the problem is reduced. However, pseudopotentials are

generally only consistent within single-body methods like HF. So it is essential

to insure that the ECP is suitable for use in QMC. In addition, the DMC

methods used here require a trial wave function. In this work the trial function

is derived in part from single-body methods like DFT and thus there is some

trial function dependence. This dependence is the result of fixed-node error

for fermion systems as will be discussed in Sec. 4.2. The fixed-node error

can only be eliminated by knowing the exact ground state wave function nodal

surface. Since this is unknown, care must be taken to construct a trial function

that results in good cancellation of fixed node error for energy differences. In

addition, it is difficult to optimize geometries in DMC and it is often desirable to

use geometries derived from other methods, such as DFT. This potential source

of error must also be quantified. Even with these challenges, it seems that

QMC methods uniquely offer both the high accuracy and scalability necessary

to study potentially complicated hydrogen storage systems.

1.4 Systems Studied Here

The main system we have chosen to study is hydrogen on a Ti-ethylene sor-

bent with as many as 5 hydrogen molecules added. In most of the runs the

first molecule chemisorbs resulting in a TiH2-ethylene adsorbent. This system

is selected because it has chemical properties representative of larger transition

metal decorated carbon systems.[16] Thus the results obtained here should be

more broadly applicable and highly relevant to larger systems. Such carbon and

transition metal systems combine the advantages of the high surface areas asso-

ciated with many carbon systems with the advantageous bonding mechanisms

associated with σ-bonding on transition metals that result in adsorption.

In order to demonstrate that our methods are accurate enough for this de-

manding problem, a substantial amount of work has gone into conducting tests

of our QMC methods at each step along the research path. For this reason, the

final results presented are not only the numbers pertaining to hydrogen storage

energetics, but the systematic body of test results that substantiate the accuracy

of the conclusions. This work is composed of five studies where the last study

applies QMC methods to hydrogen adsorption on the Ti-ethylene systems.

The first study presented is that of H2. In this work some very general is-

sues about treating hydrogen are addressed that apply to the work as it moves

forward. Some of the ideas of this study serve as a template for other elements

that are included later in the research. Second, a study of hydrogen on benzene

is presented. That work has already resulted in a publication in the Journal of

Chemical Physics.[17] The main purpose of this study, within the context of this

thesis research, is to test the quality of our trial wave function and the ability

of our methods to resolve even the small energy differences associated with hy-
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drogen physisorption. Third, a study of atomic Ti is presented. Since this work

is done with an eye toward even larger systems, we like to use pseudopoten-

tials for the Ti core electrons. This results in a significant savings of computer

time and improved statistics. The trial wave functions are tested here as well.

Fourth, we treat TiH2 which is an important building block of the adsorbent

systems we finally study. Moreover, the Ti d-states determine the symmetry

of the overall molecular state. This results in low lying excited states that are

very close in energy. Again, trial functions are compared. A big part of this

work involves studying the error due to using PBE-DFT optimal geometries as

opposed to DMC optimized geometries. This is done by conducting a full DMC

geometry optimization for the ground and two excited states. DMC potential

energy surfaces are constructed so that optimal geometries can be statistically

estimated. Finally we study hydrogen adsorbed on Ti-ethylene where numerous

structures are compared and formation energies calculated. This body of work

will allow not just for conclusions about hydrogen storage but of the suitability

of the QMC method in this context.

1.5 Thesis Outline

A description of single-body and many-body deterministic methods is given in

Chapters 2 and 3. Hartree-Fock (HF) theory and Density Functional Theory

(DFT) are discussed along with issues related to basis sets and the corrections

associated with basis set superposition error. Further discussion regarding the

Configuration Interaction (CI), Coupled Cluster and Møller-Plesset second or-

der perturbation (MP2) theories are also touched upon for reference purposes.

These chapters are not designed to be exhaustive studies, but rather to serve

as reference points so that the result with which we compare can be put into

context.

In Chapter 4, significantly more detail is given regarding the Monte Carlo

methods that are used throughout this work. Starting with Monte Carlo in-

tegration and importance sampling, discussion is made regarding the standard

Variational and Diffusion Monte Carlo (VMC and DMC) algorithms we use as

well as the Lattice Regularized DMC (LRDMC) variant. Particular attention

is paid to describing the fixed-node and time-step error issues in DMC. Fur-

ther discussion is made with regard to pseudopotentials, the localization error

and the partial remedy put forth by Casula[18] that restores the variational

character and partial cancellation of errors for energy differences.

A discussion regarding the correlated trial wave functions that are used in

this work is given in Chapter 5. Here we describe the Slater-Jastrow trial

function form which is used in the majority of the work. It is shown how

additional correlations beyond those of single slater determinants (or even some

large determinant expansions) can be included through use of a Jastrow factor.

Also, the critical role of the single-body orbitals in defining the nodal surface is
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explained. In addition, the Jastrow correlated Antisymmetric Geminal Power

(JAGP) trial function is also described. This trial function form is ideally suited

in describing resonant valence bonds (RVB) in systems like benzene and even

correlations of more complicated systems.

Chapter 6 is the first of five studies. Here, methodology and results pertain-

ing to hydrogen are given. These results are not an end in and of themselves but

rather illustrate how the choices are made in treating hydrogen and other atoms

in more general systems. Discussions regarding basis sets and convergence are

also presented along with results for HF, PBE-DFT and DMC.

Hydrogen binding on benzene is presented in Chapter 7. Here compari-

son is made between the PBE-DFT results using a Slater-Jastrow and JAGP

(Geminal) trial function. This work establishes the level of accuracy that can

be obtained using DMC methods. Moreover, this study also presents a strong

test of the Slater-Jastrow nodal surface in describing this system, comparing it

to significantly more correlated trial function. This establishes fixed-node ac-

curacy in energy differences between two significantly different trial functions.

This study also seeks to assess the nature of the bonding between hydrogen and

benzene.

A study of atomic titanium is given in Chapter 8. Here we test the Ti

pseudopotential given by Burkatzki, Filippi and Dolg (BFD).[19] Comparison

is made between HF and DFT trial functions and usable Jastrow cutoffs are

determined. Comparisons are made for the 1st and 2nd ionization potentials

along with the lowest σ-excitation. This study also allowed for the gaining of

some initial experience with d-state behavior and experience in obtaining correct

angular momentum states when the single body orbitals are real. This study

also yields insight into how to go about searching for hard to find states in other

systems.

In Chapter 9, findings are provided for a DMC optimization of titanium

dihydride (TiH2). Here attempt is made to study how good PBE optimized ge-

ometry is as compared to a DMC optimized geometry. Geometry optimization of

DMC is generally quite costly and not typically done. This study quantifies the

energy error due to optimization in PBE-DFT theory. Geometry optimization

in DMC is conducted by quadratic fit of DMC energy data on a configuration

space grid allowing optimal energies and geometries to be calculated to within

a statistical accuracy. Trial functions from both HF theory and PBE-DFT are

compared for the ground and two excited states of TiH2. These tests of trial

wave function and accuracy for small energy differences are thereby extended

to a system that is very similar and an important component of the hydrogen

storage systems we finally study.

Chapter 10 presents the main study of this thesis research which is hydro-

gen adsorption on Ti-ethylene. This system has shown excellent potential to

store hydrogen in previous work.[16] Several spin states for each structure are

considered so that the ground state in both PBE-DFT and DMC can be con-
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firmed. Comparison is made between PBE-DFT and DMC for all calculations

done. Formation energies are also calculated for both ground and excited state

transitions. Various aspects of the bonding are also discussed.

This work concludes with a summary of findings. In addition, the suitability

of the QMC methods used will also be discussed in some length. Conclusions are

also drawn about the Ti-ethylene system as a foundation for practical hydrogen

storage. Final thoughts are also given regarding possible future work and also

other approaches to this problem that might be relevant.
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Chapter 2

Single-Body Methods

Single-body methods offer a cost effective means of getting good results, al-

though not as reliably as many-body methods. Addition, single-body methods

can serve as a starting point for higher-level theories. For example, the QMC

methods discussed later in Chapter 4 use single-body methods to derive a trial

function. In this way these methods are complementary. The descriptions given

here are by no means intended to be complete treatments. Rather, because these

methods are directly relevant to the present work, it will prove useful to have

some basic reference material so that distinctions can be made as discussion

moves on to the many-body theories that are the methods of interest.

2.1 Slater Determinant Wave Function

Description of a quantum mechanical wave function with many bodies requires

certain properties to be satisfied. For bosonic systems, the wave function must

be symmetric under particle exchange while fermion systems must be anti-

symmetric. Mathematically this means that

Ψ(x1,x2) = ±Ψ(x2,x1) (2.1)

where Ψ is the wave function, xi indicates the coordinate of particle i (it can have

spin too), with + and − is for boson and fermion systems respectively. Since

this work focuses on molecules and the description of electrons, the fermion

form is used. In 1929 Slater observed that an antisymmetric wave function can

be constructed from a determinant [20], i.e.

ΨS(x1, . . . ,xN ) =
1√
N !
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∣

(2.2)

where each χi(x) is a spin orbital. Particle exchange is equivalent to a transpo-
sition of rows which changes the sign of the wave function. Since there are no
spin orbit interactions it turns out that Eqn. (2.2) can effectively be simplified
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by factoring it into spin up and spin down parts as

ΨS(x1, . . . ,xN ) ∼=
1√

N↑!N↓!

˛

˛

˛

˛

˛

˛

˛

˛

˛

ϕi1 (r1) . . . ϕi
N↑

(r1)

.

.

.
. . .

.

.

.

ϕi1 (rN↑ ) . . . ϕi
N↑

(rN↑ )

˛

˛

˛

˛

˛

˛

˛

˛

˛

↑

×

˛

˛

˛

˛

˛

˛

˛

˛

˛

ϕi
N↑+1

(rN↑+1) . . . ϕiN
(rN↑+1)

.

.

.
. . .

.

.

.

ϕi
N↑+1

(rN ) . . . ϕiN
(rN )

˛

˛

˛

˛

˛

˛

˛

˛

˛

↓ (2.3)

where each ϕi(r) is a single-body space orbital, indices i1 - iN↑ are for spin

up, and iN↑+1 - iN are for spin down. While the factored form in Eqn. (2.2)

and the standard form in Eqn. (2.3) are not equal, they are equivalent in the

sense that all observable expectation values are the same. Finally, it should be

clarified that Eqn. 2.2 above is a single-body description because wave function

is in effect completely defined by the single body orbitals. This description

has certain limitations that will be expounded upon later in the Chapter 5 on

correlated wave functions.

Hartree-Fock (HF) theory [21, 22] seeks the best variational solution to the

Schrödinger equation where the solution is restricted to a single Slater deter-

minant (2.5). The electronic part of the standard many-body Hamiltonian is

given by

Ĥ = −
∑

i

1

2
▽2

i +
∑

i

Vext(ri) +
∑

i6=j

1

|ri − rj |
(2.4)

where Vext(r) = −∑

I
ZI

|r−RI | and ZI is the charge of nuclear center I. Restrict-

ing solutions to those representable as a single Slater determinant gives rise to

a integro-differential system of equations that lead to an effective single-body

Hamiltonian involving a mean field (the sum of the potentials). This system of

equations, referred to as the Fock operators, can be written as

Hσ
eff = −1

2
▽2 +Vext(r) + VHartree(r) + V̂ σ

x , (2.5)

where VHartree(r) is the average Coulomb potentials due to the electrons and

V̂ σ
x is the exchange operator that acts differently on each orbital.

By choosing a basis for the spin and spatial orbitals, equation (2.5) further

simplify to one of the forms of the Roothaan equations. Choosing specific basis

sets, e.g. Gaussians or plane-waves, can result in further gains in computational

efficiency.

Hartree-Fock serves as a starting point for higher-level many body theories

and perturbation theory. In addition HF also serves as a reference point for

the correlation energy. The HF solution is uncorrelated and so is defined to

have zero correlation energy. Certainly less restrictive wave function forms will

result in a lower variational energy, where the energy difference is defined as the

correlation energy.
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2.2 Density Functional Theory

Density functional theory (DFT) is based on theorems put forth by Hohen-

berg and Kohn in 1964 [23] and the ansatz of Kohn and Sham in 1965 [24]. The

Hohenberg-Kohn theorems state that the ground state particle density uniquely

defines the external potential (e.g. coulomb potential from the atomic nuclei)

and that, for a given external potential, there exists a universal energy func-

tional valid on the set of V-representable density functions. The power of the

Hohenberg-Kohn theorems is to reduce the problem of finding a many-body

wave function to one of finding an electron density that is a function of position

only. The Kohn-Sham ansatz is an assumption that there is a mapping from

the many-body problem to some single-body (non-interacting) problem. The

single-body solutions have no physical meaning other than to provide contribu-

tions to the density. While there is no proof for this ansatz, it has been shown

to work well in many cases.

The density functional formalism [25, 26] results in an auxiliary single-body

Hamiltonian given by

Hσ
aux = −1

2
▽2 +Vext(r) + VHartree(r) + V σ

xc(r) (2.6)

which has the same form as the HF Hamiltonian except that the V̂ σ
x term is now

V σ
xc(r) = δExc[n(r, σ)]/δn(r, σ) which is a local exchange-correlation potential

where Exc is the exchange-correlation energy functional. This leads to a set

of self-consistent differential equations that are simpler than the HF equations.

Unfortunately the exact Exc functional is not known and there is no known

way to systematically generate an approximation that approaches the exact

limit. For this reason approximations are made. Among the most widely used

of these is the local density approximation (LDA) and the generalized gradient

approximation (GGA).

The local density approximation (LDA) essentially is designed to reproduce

the behavior for the electron gas and has an exchange-correlation energy func-

tional of the form

Exc[n(r)] =

∫

drn(r)ǫLDA
xc (n(r)). (2.7)

Where ǫxc is the sum of exchange and correlation functions for the LDA. Here

local exchange energy is given analytically by the Dirac exchange energy func-

tion [27] and correlation energy computed by Monte Carlo methods in 1980 by

Ceperley and Alder [28]. As such, this approximation produces exact results

for the electron gas and generally good results for systems where the electron

density varies slowly such as periodic metal systems. On the other hand, many

systems, such as surfaces or molecules, produce more rapidly varying electron

densities that are problematic for LDA because it does not incorporate known

density gradient corrections. In practice, LDA is known to overbind and give

too short of bond lengths.
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The Perdew, Burke, and Enzerhof (PBE) functional [29, 30] based on the

generalized gradient approximation (GGA) is used here throughout except pos-

sibly where other functionals were tried, e.g. the hybrid B3LYP [31, 32, 33], for

comparison purposes. The main idea of the PBE-GGA is to use an exchange-

correlation energy functional of the form

Exc[n↑, n↓] =

∫

drf(n↑, n↓,▽n↑,▽n↓). (2.8)

which can account for both spin density and gradients. The correlation func-

tional exactly satisfies the slow varying and rapidly varying density limits and

the high density limits. The exchange energy functional in addition satisfies

uniform coordinate scaling, spin scaling, unpolarized uniform electron gas lin-

ear response, and the Lieb-Oxford bound. In practice, the GGA results in a

marked improvement in total energies, atomization energies, energy barriers

and structural energy differences over LDA. Practically speaking, the GGA cor-

rects the overbinding of LDA (although sometimes this is an overcorrection).

Nonetheless, the success of the GGA in accurately describing inhomogeneous

systems such as molecules has resulted in widespread adoption of DFT methods

and the chemistry community and also motivates this author regarding its use

in the present work on molecular systems.

Finally it should be noted that while the single-body orbitals in DFT have

no formal meaning, they can be used to construct a trial wave function in

the form of a Slater determinant. This is reasonable when one considers the

similarity between Eqns. 2.6 and 2.5 and that the resulting trial function has

the DFT electron density. While it is rigorously true that a DFT derived Slater

determinant does not have an expectation energy that is lower than the HF

solution, such a statement does not apply to correlated Slater-Jastrow wave

functions as will be discussed later in Chapter 5.

2.3 Basis Set Issues

Both HF and DFT, as mentioned above, require that the solutions be cast in

some basis. While there are a variety of choices, for molecular systems, the

most efficient functions are localized atom-centered orbitals. This is in contrast

to periodic systems where a plane-wave description has obvious value. Atomic

centered orbitals are typically constructed in terms of Gaussian functions for

computational efficiency since multiplying and integrating Gaussians can be

done analytically. There are certain deficiencies to Gaussians, however, that

deserve discussion.

The wave function description of a molecule requires cusp conditions to be

satisfied as electrons approach atomic centers. This is generally not a problem

in single-body methods because those cusp regions represent a small portion

of configuration space that can be integrated over. This is more of a concern
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for quantum Monte Carlo calculations as will be discussed later in Chapter 4.

This problem cannot be fully addressed with more complete basis sets because

Gaussians always have a gradient of zero about the origin.

Another problem is basis set superposition error (BSSE). As two non-over-

lapping molecules approach one another the basis functions centered on each of

the molecules start to complement the other molecules description so that the

basis becomes more complete than when they are separated. This results in an

artificial deepening of binding wells because this error is always negative. The

counterpoise correction developed by Boys and Bernadi [34] is used to correct

for this. Here the energy of a dimer AB is corrected by subtracting off the

energy by which the constituent monomers A and B are lowered by adding the

basis functions associated with the other monomer. The counterpoise corrected

energy can be written as

ECP
AB = EAB − (EA(B) − EA) − (EB(A) − EB) (2.9)

and the basis set superposition error can be written as

BSSE = (EA(B) − EA) + (EB(A) − EB). (2.10)

In practice this becomes more difficult as the individual basis sets themselves be-

come more complete, e.g quadruple-zeta or 5-zeta. Basis set over-completeness

can result in convergence difficulties in the self-consistent energies which can

sometimes be challenging even without calculating the correction. It should be

noted that this error can become significant especially when binding is weak.[35]
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Chapter 3

Deterministic Many-Body
Methods

This work does not focus on methods such as Configuration Interaction, Coupled

Cluster or Møller-Plesset Second Order Perturbation Theory, however, compar-

isons are made against these theories to test and qualify our results. For this

reason it is important to have an idea of what these theories are along with

their strengths and weaknesses. There will be no attempt to develop a complete

treatment of these theories, rather only sketches will be given that really should

only serve as a convenient starting point for reference purposes. Possibly the

most important point to be made about these various theories is in regards to

computational scaling. In practice, the Coupled Cluster method (CCSD(T))

has an accuracy most comparable to the quantum Monte Carlo (QMC) meth-

ods that will be discussed in the next chapter. It turns out that QMC methods

scale roughly as O(N3) where as CCSD(T) scales as O(N7), a huge difference,

giving QMC methods a significant advantage for larger systems.

3.1 Configuration Interaction

Configuration interaction (CI) [22] is a method that expands a correlated wave

function in Slater determinants constructed from single-body orbitals derived

from theories such as HF. Single-body excitation terms are simply the HF so-

lution where one of the orbitals is replaced by higher orbital. In like manner,

one can construct two-body, three-body, ..., and n-body excitations. To find

the coefficients, one simply sets up the space restricted Schrödinger equation

HCIψi = Eiψi. Here the wave function is defined in terms of excitations as

Φ0 = c0 |ψ0〉 +
∑

ar

cra |ψr
a〉 +

∑

abrs

crs
ab |ψrs

ab〉 +
∑

abcrst

crst
abc

∣

∣ψrst
abc

〉

+ . . . (3.1)

The problem with full CI is that even for relatively small systems the size of H

becomes unmanageable due to approximately O(NdetN
4) (implying exponential

or factorial) scaling where N is the number of orbitals and Ndet is the number

of determinants.[36] This restricts its application to small systems with small

basis sets. However, the full CI yields the lowest possible variational energy for a

given basis set. In order to get around the very high cost of a full CI calculation,

the CI expansion is truncated so that only certain excitations are included. For
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example, the truncated CI expansion containing all single and double excitations

is known as singles doubles CI (SDCI). While this approximation brings the

scaling into the polynomial realm the solutions are no longer size consistent.[37]

For typical cases, SDCI scales as O(N6) and SDTQCI scales as O(N10). Among

the many benefits of CI is the ability to get excited states.

3.2 Coupled Cluster Methods

The coupled cluster approximation [22, 37] seeks to describe higher excitations in

terms of lower ones. This method has its roots in nuclear physics and has proven

to be a very powerful tool for chemistry.[38] This is done by assuming that the

quadruples are related to the doubles by crstu
ijkl ≈ crs

ij c
tu
kl plus all permutations.

It turns out that this approximation, when extended to hex-tuples etc., can

approximate all the even excitations of the full CI expansion. If single excitations

are added, one has the coupled cluster singles doubles (CCSD) approximation

with O(N6) scaling. Additionally, triples are added by way of perturbation

theory (CCSD(T)) resulting in a very accurate method with O(N7) scaling that

has been referred to as the “gold-standard”.[39] This method is size consistent

and invariant to unitary transformation of degenerate states and provides a good

tradeoff between cost and accuracy for smaller systems. A drawback is that the

method is not variational.

3.3 Møller-Plesset Second Order Perturbation

Theory

Møller-Plesset second order perturbation theory (MP2) [22, 40] actually follows

a formalism identical to general perturbation theory with only one stipulation:

the unperturbed Hamiltonian H0 =
∑

iHeff (ri) is the HF Hamiltonian and is

the sum over the single-body Fock operators as described in Section 2.5. Thus

the correlation energy to second order is

E
(2)
0 =

∑

abrs

| < ψ0|
∑

i<j r
−1
ij |ψrs

ab > |2

εa + εb − εr − εs
. (3.2)

Here the sum is over the double excited states, ψ0 is the HF ground state, and εi

is the eigenvalue of the ith HF orbital. This method is size consistent, extendable

to higher orders (although not often greatly advantageous), and computationally

inexpensive (once the HF calculations are done) and result in a scaling that goes

as O(N7). Note that MP2, like Coupled Cluster, is not variational.[41]
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Chapter 4

Monte Carlo Many-Body
Methods

Monte Carlo (MC) methods are based on stochastic rather than deterministic

processes. These methods were pioneered by McMillan [42] in 1965 for bosonic

systems and by Ceperley, Chester, and Kalos [43] in 1977 for fermions. As a

result of favorable O(N3) scaling, they are the only methods known that can

treat large numbers of interacting particles. The reason for this lies in the fact

that MC integration scaling is itself independent of integrand dimensionality.[44]

Additionally, MC methods are easy to parallelize and allow wave function forms

that would otherwise be prohibitive. As a result the restriction to Gaussian or

plane-wave basis sets is lifted. While these functional forms have convenient

properties, they can be expensive to evaluate. The methods used here allow

for function transformations that can result in further speed increases as, for

example, by transforming a Gaussian contraction to a B-spline form.

Two zero-temperature methods will be discussed, Variational Monte Carlo

(VMC) and Diffusion Monte Carlo (DMC) along with the Lattice Regular-

ized extension of DMC (LRDMC).[45] Next pseudopotentials will be discussed,

explaining their role and means of implementation in DMC. Additionally, a

recently developed method that restores the variational character of DMC nor-

mally broken by the localization approximation will be outlined. Finally, details

will be given regarding the B-spline transformations used in many of the calcu-

lations done in this work.

4.1 Variational Monte Carlo

Variational Monte Carlo (VMC) is based on the variational principle in quantum

mechanics combined with Monte Carlo integration. The variation principle is

essentially true by definition and states that

Eg ≤ 〈ψT |H|ψT 〉 (4.1)

where ψT is a trial wave function and Eg is the ground state energy. Em-

ploying the variational principle should not be surprising since it the premise

of many methods, among them being HF and CI. The main challenge of this

method is the necessity of supplying ψT . Combining VMC with a good corre-

lated trial wave function (Chapter 5) along with optimization methods suitable
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for stochastic processes results in a very powerful method that often leads to

accurate estimates of ground state and excited state energies. In addition, the

resultant analytic wave functions can be valuable for other purposes and give

physical insight.

Monte Carlo integration is a method of estimating an integral by random

sampling. Consider a function f(x) on the interval [0, 1]. Further suppose that

one has a Markov chain of n numbers {x1, x2, ..., xn} uniformly distributed on

this interval. Then in the limit of large n,

∫ 1

0

dxf(x) ≈ 1

n

n
∑

i=1

f(xi) ±
σf√
n
. (4.2)

Here, n must be large enough so that the central limit theorem holds. The

error in Eqn. 4.2 is the standard deviation and equals σf/
√
n where σf is the

standard deviation of f(x) on the interval [0, 1]. The key point is that the above

result holds even when x is some high dimensional vector x. This is in contrast

to quadrature integration scaling which goes as n−k/d, where k is some positive

integer and d is the dimension of the problem.

Importance sampling schemes have been devised to make VMC more

efficient. Importance sampling seeks to focus sampling on the important regions

of space (e.g. where the wave function is predominantly non-zero). Suppose one

wants to integrate f(x) over all space. Further, suppose one knows of a non-

negative (weight) function w(x)
∼∝ |f(x)| whose integral over all space is 1.

Then, given a Markov chain {x1,x2, ...,xn} distributed according to w(x), one

can compute the integration as

∫

dx f(x) =

∫

dxw(x)
f(x)

w(x)
≈ 1

n

n
∑

i=1

f(xi)

w(xi)
± σf/w√

n
. (4.3)

This transformation serves to improve scaling by a factor of σf/σf/w as well as

allow for integration over all space. Recasting VMC with importance sampling

gives

EV MC ≡
∫

dx |ψ(x)|2EL(x) ≈ 1

n

n
∑

i=1

EL(xi) ±
σEL√
n
. (4.4)

where EL(x) ≡ ψ−1(x)Hψ(x) is the local energy. At this point, all that’s

needed are electron configurations distributed according to the many-body den-

sity |ψ(x)|2.
The Metropolis algorithm, due to Metropolis et al. [46], generates a

random-walk with probability distribution matching a given weight function

w(X). One starts with a configuration of electrons X and generates a trial

configuration XT according to some transition probability T (X → XT ) where

T (X → XT ) = T (XT → X) (generalized Metropolis relaxes this constraint
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[45]). The trial configuration is accepted with probability

min

{

w(XT )

w(X)
, 1

}

. (4.5)

If accepted, XT becomes the next step of the random walk, otherwise X is. This

algorithm has been improved upon by using a generalized Metropolis algorithm

along with the Fokker-Planck formalism so that the diffusion is built into the

transition probability T above.

Correlated Sampling [45] is a method by which energy differences, or the

difference in some other expectation value, can be estimated while at the same

time reducing uncertainty. Consider two wave functions Ψ1 and Ψ2. Construct

a guiding function Π = |Ψ1|2 + |Ψ2|2 and weights wij = Ψ∗
i Ψ

∗
j/Π. Then the

energy difference between states 1 and 2 is given by

∆E12 =

∫

dX|Ψ1(X)|2E1
L(X)

∫

dX|Ψ1(X)|2 −
∫

dX|Ψ2(X)|2E2
L(X)

∫

dX|Ψ2(X)|2 =

〈

w11E
1
L

〉

〈w11〉
−

〈

w22E
2
L

〉

〈w22〉
(4.6)

where the averages 〈· · · 〉 are weighted according to the guiding function Π

and Ei
L is the local energy of Ψi. When Ψ1 ≃ Ψ2 then w11 ≃ w22 ≃ 1

2

(away from nodes) and the statistics is correlated so that Eqn. (4.6) resem-

bles ∆E12 = 〈E1
L − E2

L〉 thus reducing the uncertainty. However, if Ψ1 and

Ψ2 are significantly different the statistics are uncorrelated and Eqn. (4.6) re-

sembles ∆E12 = 〈E1
L〉 − 〈E2

L〉. Correlated sampling is particularly important

for optimization calculations. Consider calculating an energy derivative with

respect to some optimizable parameter α (e.g. a Jastrow coefficient). In finite

difference form, the derivative is calculated ∆E/∆α. However, the uncertainty

σ(∆E) does not approach 0 as ∆α → 0 for an uncorrelated energy difference.

Using a correlated energy difference, σ(∆E) → 0 as ∆α → 0 because ∆Ψ → 0

as ∆α→ 0. Thus correlated sampling allows accurate derivatives of energy (or

any observable) to be calculated.

4.2 Diffusion Monte Carlo

Diffusion Monte Carlo (DMC) is a stochastic method that evolves the imaginary

time (τ = ıt) Schrödinger equation such that the ground state is projected out

of a trial wave function ψT such that

ψg ∝ lim
τ→∞

e−(Ĥ−Eg)τψT = lim
τ→∞

∑

i

e−(Ei−Eg)τ ciψi. (4.7)

Here Ĥ is the Hamiltonian, Eg is the ground state energy and the trial wave

function ψT =
∑

i ciψi is expanded in the basis of eigenstates ψi and is not

orthogonal to the ground state. Unfortunately, because Ĥ = T̂+V̂ and [T̂ , V̂ ] 6=
0 the exact Green’s function for e−(Ĥ−Eg)τ is not known. An approximate
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Green’s function can be constructed by using the Trotter-Suzuki formula for

the exponentiation of a sum of operators

e−τ(Â+B̂) = e−τB̂/2e−τÂe−τB̂/2 + O(τ3). (4.8)

This results in an approximate Green’s function that is exact in the limit as

τ → 0 but results in a time step error for finite τ that must be quantified.

However, due to antisymmetry in systems containing more than two fermions,

ψ will take on both positive and negative values that result in an exponential

increase in statistical noise near nodal surfaces. Also, additional problems arise

due to Coulomb potential singularities. These problems can be alleviated by

doing an importance sampling transformation where the mixed estimator

f ≡ ψTψ (4.9)

is evolved in imaginary time according to

−∂τf(R, τ) = −1

2
▽2 f(R, τ) + ▽ · [vD(R)f(R, τ)] + [EL(R) − ET ]f(R, τ).

(4.10)

Here, vD(R) = ▽ ln |ψT (R)| is the drift velocity and EL is the local energy

as defined in Eqn. (4.4). To make f non-negative everywhere an additional

boundary condition, sign(ψ) = sign(ψT ), is implemented. This is the fixed-node

approximation that results in a fixed-node error that is trial function dependent.

Finally, the Coulomb potential singularities necessitate the local energy cusp

conditions be satisfied in the trial function. The detailed cusp conditions will

be discussed later in Chapter 5 when correlated wave functions are discussed in

detail.

The first two terms on the left hand side of Eqn. (4.10) represent diffusion

and drift respectively. These can be implemented by way of a Langevin equation.

The last term in Eqn. 4.10 is a branching term. The number of walkers evolving

from R to R′ is given by ⌊P +η⌋ where P = exp(−τ [EL(R)+EL(R′)−2ET ]/2)

and η is a random number between 0 and 1. It immediately follows that ET

can be used to control the overall walker population. The ground state energy

can be estimated as

EDMC = lim
τ→∞

〈e−τH/2ψT |H|e−τH/2ψT 〉
〈e−τH/2ψT |e−τH/2ψT 〉

=
〈ψ|H|ψT 〉
〈ψ|ψT 〉

≈ 1

n

n
∑

i=1

EL(Ri).

(4.11)

Here a distribution of n walkers has been assumed. Expectation values of ob-

servables that don’t commute with the Hamiltonian can be calculated by a

combination of VMC and mixed DMC estimators.[44]

With Monte Carlo integration, the more accurate the calculation the more it

costs. However, time-step errors often necessitate a time-step τ that is smaller

than the autocorrelation time tac in the sample. This results in a rescaling of
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the number of samples to account for the autocorrelation length nac = tac/τ in

the samples so that the error ∆ in the expectation is given by

∆ = σ

√

nac

n
(4.12)

Clearly the cost of a calculation is proportional to number of samples n given

by

n =
tacσ

2

τ∆2
. (4.13)

This allows one to see the relationships that often need to be considered when

setting up runs. The cost is proportional to the variance σ2, and inversely

proportional to the square of the desired accuracy (∆2). In addition, when the

time-step is so small that the autocorrelation length is less than 1, the cost is also

inversely proportional to the time-step (a useful relationship with conducting

convergence studies).

4.3 Lattice regularized diffusion Monte Carlo

(LRDMC)

The lattice regularized form of DMC (LRDMC) samples on two incommensurate

grids so that sampling density can vary depending on the level of wave function

detail. The usual DMC Trotter breakup results in a time-step error while the

LRDMC paradigm results in a space step-error, but both share the same upper

bound property in the zero-time-step/zero-lattice-space limit and converge to

the same projected fixed-node (FN) energy.[18]

In the LRDMC approach, the kinetic energy operator T is replaced by a

discretized kinetic energy operator T a. T a is a linear combination of two discrete

operators with incommensurate lattice spaces a and a′ (a′ = νa, with ν an

irrational number > 1), namely

T a = −η
2
(∆a,p + ∆a′,1−p), (4.14)

where ∆a,p is the discretized Laplacian with mesh a and weighting function p

(see Refs. [47] and [48]), and η = 1 + µa2 is a prefactor with the parameter

µ tunable to improve the efficiency of the diffusion process. Working with

two incommensurate meshes helps to sample densely the continuous space by

performing discrete moves of length a and a′. The finest hop samples are more

likely in regions near atomic centers while the coarser hop samples more often

occur in valence regions, the result being an efficient sampling of the overall

configuration space. The difference between the continuous and discretized local

kinetic energies is added to the potential V (R), resulting in a mesh dependent
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potential

V a(R) = V (R) +

[

(T − T a)ΨT

ΨT

]

(R). (4.15)

The consequence is a faster convergence of the energies in the a→ 0 extrapola-

tion. In spite of the discretization of T in Eqn. 4.14 and the redefinition of V in

Eqn. 4.15, the LRDMC method is equivalent to the continuous space FN DMC.

Indeed, in the limit of small mesh sizes a and a′, the discretized Hamiltonian

Ha approaches the continuous H.

4.4 Pseudopotentials

Pseudopotentials reproduce the combined effects of inert core electrons and

the nucleus. They not only reduces the number of particles in a simulation,

they smooth the wave function so that larger time steps can be used. These

factors work together to allow O(N3) scaling in the number of electrons to be

realized.[44] There are costs to using pseudopotentials. Pseudopotentials assume

a frozen core and as such don’t account for the interplay between the core and

valence electrons. This approximation becomes problematic when the core is

large and there are only one or two valence electrons (it should be noted that

core-polarization potentials are designed to address this issue). Additionally,

some pseudopotentials are non-local and not truly compatible with the standard

DMC implementation so that additional approximations are required to localize

the pseudopotential.

The norm conserving pseudopotentials (NCPP) used in this work are

constructed according to the description given by Hammenn, Schluter, and Chi-

ang [49] so that the pseudo valence wave function has properties that match

the all-electron valence wave function for a reference ab initio DFT calculation.

Specifically, the following pseudo- and all-electron wave function quantities must

match: the valence wave functions beyond some radius Rc, the eigenvalues, the

logarithmic derivatives at Rc, and the integrated charge inside Rc (orbital by

orbital). With these criteria satisfied, Hammenn, Schluter, and Chiang have

shown that the energy derivatives of the dimensionless logarithmic derivative,

∂2

∂ε∂r
lnψl(ε, r), (4.16)

evaluated at Rc also match. This implies that the pseudo- and all-electron

valence wave functions respond similarly to first order, an important property

that suggests these pseudopotentials are transferable to other (e.g. molecular)

systems. The cutoff Rc is chosen to be as large as possible (soft) for smoothness

while being small enough so that bonds are accurately described. The general
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form of the pseudopotential V̂nl is given by

V̂nl =
∑

i

V̂nl,i where V̂nl,if(ri) =
∑

l,m

Vnl,l(ri)Ylm(Ωi)

∫

4π

Y ∗
lm(Ω′

i)f(r′i)dΩ
′
i

(4.17)

and is non-local since the radial part varies with angular momentum.

The localization approximation is used in DMC because non-local pseu-

dopotentials in effect create another sign error (similar to the sign error that

leads to the fixed node approximation). When non-local pseudopotentials are

used the MC diffusion equation (4.10) becomes

−∂τf = −1

2
▽2f+▽·[vD(R)f ]+[EL(R)−ET ]f−

{

V̂nlψT

ψT
− V̂nlψ

ψ

}

f. (4.18)

The problem arises in the last term of (4.18). It is essential to have a very good

trial wave function so that ψT ≃ ψ, the last term in (4.18) can be taken to be

negligible. A consequence of the approximation is that the solution is no longer

variational.

A variational upper bound DMC scheme for non-local pseudopo-

tentials has been recently devised by Casula in 2006.[18] This scheme is a

sort of fixed node approximation for the non-local part of the Hamiltonian that

addresses some of the major short comings of the standard localization approxi-

mation. In contrast, this method provides a variational upper bound of the true

non-local Hamiltonian. Additionally, DMC stability is improved due to a soft-

ening of the most attractive parts of the non-local potential. While this method

still results in a localization error, there is now a strict partial cancellation of

this error in energy differences, an important property.

This method is compatible with both the standard DMC and LRDMC imple-

mentations. In contrast to the localization approximation, a breakup[47, 18] of

the non-local potential localizes the positive matrix elements into the branching

term while treating the negative matrix elements as a non-local diffusion oper-

ator sampled via a heat bath scheme.[18] The positive and negative terms are

defined by

V ±
R′,R = 1/2(VR′,R ± |VR′,R|) (4.19)

where

VR′,R =
ΨT (R′)

ΨT (R)
〈R′|Vnon-local|R〉 , (4.20)

and R, R′ are all-electron configurations on a quadrature mesh with one elec-

tron rotated around a pseudo ion.[50] The breakup corresponds to an effective

Hamiltonian Heff, defined as

Heff
R,R = K + V eff(R) (4.21)

Heff
R′,R = 〈R′|Vnon-local|R〉 if VR′,R < 0,
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with the modified local potential V eff(R) = Vloc(R) +
∑

R′ V
+
R′,R that includes

the sign flip terms. The FN ground state energy of the Hamiltonian in Eqn.

4.21 is a variational upper bound of the original non-local Hamiltonian.[51]

Furthermore, DMC stability is improved substantially compared to the local

approximation, where the most attractive parts of the localized pseudopotential

can result in a walker population “blow up”. Moving the negative part of the

localization into a diffusion-like term causes the walkers to be driven away from

such regions.

4.5 B-spline Grid Transformations

As mentioned in the introduction of this chapter, QMC methods are not married

to a particular basis set or wave function form. Evaluating the single-body

orbitals and/or derivatives is certainly where the main cost in calculations arises.

For example, it turns out that Gaussian contractions can be very expensive to

evaluate all by themselves. Transforming Gaussian contractions into a B-spline

grid form results in significant increases in speed. Recently the einspline C

library for the creation and evaluation of interpolating cubic B-splines (basis

splines) has been developed by Kenneth Esler [52] for general use and also for

specific use in the QMCPACK computer code by Jeongnim Kim et al. [53]

which has been used for all the standard DMC calculations done in this work.

The cubic B-spline transformations done for the present calculations are on

a uniform grid. Namely 3rd order polynomials are fit piecewise on a uniformly

partitioned grid so that the resulting function is continuous, continuous on its

1st and 2nd derivatives, and piecewise continuous on its 3rd derivative. This

allows for a very versatile basis that can efficiently describe Gaussian contrac-

tions. Using B-splines, the Gaussian contractions need only be evaluated on

the grid once at the beginning of the calculation. Afterward the main calcu-

lation, which typically requires millions of function evaluations, proceeds using

the more efficient cubic polynomials instead.

In addition to transforming other functional forms, B-splines are useful in

their own right. As will be mentioned in Chapter 5, B-splines in conjunction

with stochastic optimization techniques can be used to describe Jastrow factors

where the functional form is not obvious from the outset.
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Chapter 5

Correlated Wave Functions

Throughout this work, two types of correlated trial wave functions are used, the

Slater-Jastrow (SJ) and the Jastrow correlated Antisymmetric Geminal Power

(JAGP). These wave function forms are a departure from the Slater determi-

nant used in HF theory and the determinant expansions used in CI and related

theories. The reason a simple Slater determinant is not desirable for this work

is because it results in a wave function that fundamentally lacks electron cor-

relations. This is problematic for QMC methods because electron-electron cor-

relations can be directly accounted for in both VMC and DMC. On the other

hand, multi-determinant expansions have also been avoided. This function form

can give a proper correlated wave function, however, it is expensive. The trial

functions used here are designed to be computationally less demanding like the

Slater determinant while providing for electron correlations somewhat similar

to multi-determinant expansions. Below I start with a general explanation re-

garding Jastrow-Determinant form with some discussion specifically regarding

the Slater-Jastrow form. Next cusp conditions are explained. Finally the JAGP

will be discussed along with its relevance to describing the resonating valence

bonds (RVB) like those in benzene which is a system that is studied as a part

of this thesis research.

5.1 The Jastrow Factor

The Monte Carlo methods used here work most efficiently when correlated trial

wave functions that reasonably approximate the ground state are used. One

of the most straightforward ways to introduce correlation is to start with an

antisymmetric wave function (e.g. a Slater determinant) and multiply it by a

Jastrow factor. The N -electron wave function can then be expressed as

Ψ(x1, . . . ,xN ) = JS(x1, . . . ,xN )ΨAS(x1, . . . ,xN ). (5.1)

where xi ≡ {ri, σi} is a space-spin coordinate, the factor JS is the symmetric

Jastrow factor defined to be positive and symmetric upon particle exchange,

and ΨAS is the antisymmetric factor which typically is a determinant or sum of

determinants. The Jastrow factor can be further factored into symmetric one-

body, two-body, three-body, and higher terms which correspond to electron-ion,
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electron-electron, electron-electron-ion, etc. interactions. Since the Jastrow fac-

tor must be strictly positive and because the form is advantageous, the Jastrow

form used throughout this work is defined as

JS ≡ e−(J1+J2+J3+...) (5.2)

where J1, J2, and J3 are one-, two-, and three-body Jastrow functions. The

resulting wave function is efficient in QMC calculations and the one- and two-

body Jastrow functions can be used to satisfy the cusp conditions.

The most used wave function form throughout this work is indeed the Slater-

Jastrow. Single-body orbitals are obtained from theories such as HF and PBE-

DFT and combined with a Jastrow factor that includes electronic correlation by

way of VMC optimization of the Jastrow functions. The resulting trial function

has a lower variance, smaller time-step error, and a reduced pseudopotential

localization error. This form is then suitable to project out the fixed-node DMC

energy. Note that in the work presented here, no attempt is made to modify

the Slater factor so that the nodal surface is that from the single-body theory

used (e.g. HF or PBE-DFT). However, as will be shown, this nodal surface is

sufficient to recover much of the correlation energy while at the same time there

is a partial cancellation of the fixed-node error in energy differences. Still we

like to qualify our results against a more correlated JAGP trial function that

will be described in Sec. 5.3. However, it will be useful to discuss the cusp

conditions that are relevant to both the SJ and JAGP.

5.2 Cusp conditions

Cusp conditions describe the behavior of the wave function as two (or possibly

more) particles approach one another. The most important cusp conditions for

the DMC algorithm are for the electron-electron and electron-nucleus cusps.

While a proper cusp description is a property of the true ground state wave

function, it is usually not so important in many methods because this region of

configuration space can usually be integrated over. In the DMC algorithm this

is not the case. The problem arises in the branching (last) term of the diffusion

equation involving the mixed estimator in Eqn. 4.10. If the local energy becomes

unbounded the walker population explodes ultimately resulting in the computer

code crashing (typically), a potentially serious problem. In order to remedy this

situation, it is necessary that the kinetic energy term in the local energy diverge

with the potential energy so that a cancellation of terms keeps the local-energy

finite. It should be noted that this cusp behavior is correct physics for any

method since the local-energy should be a constant for the exact ground state

wave function.

Starting with the electron-ion cusp conditions, consider the relevant parts

of the local energy, Eloc = HΨ/Ψ, that involve the diverging terms that must
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cancel as the electron-ion separation r → 0. This implies

−1

2
▽2 Ψ − Z

r
= 0 (5.3)

where Z is the charge of the nucleus. Writing this in terms of the radial form

of the Laplacian and neglecting terms that don’t involve 1/r gives

−2

r

∂Ψ

∂r
− Z

r
= 0. (5.4)

Using the wave function form Ψ = e−J1ΨAS (note ΨAS can be taken to include

any other Jastrows for the purposes of this derivation) gives the final result

which is
∂J1

∂r
= Z. (5.5)

It should be noted that terms involving ΨAS have been dropped because in this

work Gaussian basis functions are used (the Laplacian of a Gaussian evaluates

to zero at the cusp).

The electron-electron interaction demands a cusp condition because, like

the electron-ion interaction, it has a diverging potential given by 1/rij when

electrons i and j approach one another. The main difference as compared to the

electron-ion cusp is that the sign of the divergence is opposite. The derivation

follows similar arguments to the electron-ion result except that now a center-

of-mass Hamiltonian is required and the Jastrow function J2 must have explicit

dependence on distances rij . The cusp condition for opposite spin electrons is

then given by
∂J2

∂rij
= −1

2
(5.6)

while for electrons of the same spin it is

∂J2

∂rij
= −1

4
. (5.7)

The calculations done in this work only use the two-body Jastrow for opposite

spin electrons because it is recognized that the Pauli exclusion principle for

fermions will prevent like spin electrons from approaching too close.

A brief word about practical implementation of the Jastrow is now in order.

As mentioned above, the Jastrow factor must be symmetric under exchange.

So suppose one wants to implement an electron-ion Jastrow for ion I. Then a

function form is assumed so that the relationship between electron i and ion I

is indicated by JI(riI). Then the symmetric one-body Jastrow function for a

set of ions indexed by I is given by

J1(r1, . . . , rN ) =
∑

iI

JI(riI) (5.8)

so that just one Jastrow function needs to be defined for each ion. Similarly,
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one function is needed for the electron-electron Jastrow.

In the following chapters a number of different Jastrow function forms are

used. Most recently the B-spline form has been implemented in the QMCPACK

code so that no functional form is assumed other than the cusp condition as a

boundary condition and an additional boundary condition that enforces contin-

uous derivatives at the cutoff. However, other forms are presented and it will

prove to be more insightful to explain what is done in the context of the specific

calculation. One- and two- body Jastrows are used on all the calculations with

the addition of three- and four-body Jastrows, which provide electron-electron-

ion and electron-electron-ion-ion correlations, used in the JAGP calculations

done for the hydrogen on benzene problem.

5.3 Jastrow correlated Antisymmetric Geminal

Power (JAGP)

While the Slater determinant description is appropriate for cases where cor-

relations are weak and well-represented by the HF solution, there are notable

shortcomings. For example, a single determinant fails to describe bond breaking

such as H2 → 2H, where at least two determinants are required. In general,

large determinant expansions dramatically increase the cost of a calculation (e.g.

scaling is O(N6) for SDCI and O(N !) for full CI). An alternative is the Jastrow

correlated antisymmetric geminal power (JAGP).

A JAGP is a Jastrow correlated single-determinant wave function construct-

ed of two-body orbitals (geminals). This approach has been successfully applied

in diverse contexts where electron correlations play a significant role. For ex-

ample, the JAGP form is related to the pairing in the BCS wave function for

superconductivity [54, 55], molecules where resonating valence bonds (RVB)

proposed by Pauling in 1939 [56] plays a role, and strongly-correlated electrons

in transition metals. Recent applications include benzene [57], benzene dimers

interacting via weak van der Waals forces,[58] and the iron dimer.[59]

The form of the AGP part of the JAGP wave function for an unpolarized

spin singlet system is

ΨAGP (r↑1, r
↓
1, · · · , r↑N/2

, r↓N/2
) = Â[Φ(r↑1, r

↓
1) · · ·Φ(r↑N/2

, r↓N/2
)] (5.9)

where Â is the antisymmetrizing operator and the geminals are singlets given

by

Φ(r↑, r↓) = φ(r↑, r↓)(|↑↓〉 − |↓↑〉). (5.10)

Under the assumption that φ(r, r′) is symmetric, the spatial part of the AGP
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can be written as a determinant of pairing functions [60]

ΨAGP (r↑1, r
↓
1, · · · , r↑N/2

, r↓N/2
) =

∣

∣

∣

∣

∣

∣

∣

∣

φ(r1
↑, r1↓) . . . φ(r1

↑, rN/2
↓)

...
. . .

...

φ(rN/2
↑, r1↓) . . . φ(rN/2

↑, rN/2
↓)

∣

∣

∣

∣

∣

∣

∣

∣

(5.11)

and the paring function φ(r↑, r↓) can be expanded in single-body orbitals about

the ionic centers so that

φ(r↑, r↓) =
∑

lmab

λlm
ab ϕal(r

↑
i )ϕbm(r↓j ) (5.12)

where l and m index the orbitals on ionic centers a and b respectively. In this

work Gaussian type orbitals (GTO) are used.

The Jastrow part of the JAGP wave function provides a way for additional

correlations and cusp conditions to be incorporated into the wave function.

The Jastrow must therefore contain the cusps since the pairing function in Eqn.

(5.12) is constructed from GTOs. For the electron-ion Jastrow, the one-body

Jastrow function J1 (as defined above in Eqn. 5.2) is used to correct the cusps

where electrons approach ions and is given by

J1(r1, . . . , rN ) =
∑

i

∑

I

(2Za)
3/4u((2ZI)

3/4|ri − RI |) (5.13)

where the sum I is over ion centers, and ion charge and position are given by Za

and Ra respectively, u(x) can take any form where u(0) = 0 and u′(0) = 1
2 (e.g.

a Padé form). In this work, u(r) ≡ F
2

(

1 − e−r/F
)

where F is an optimizable

parameter. For the electron-electron Jastrow, the J2 function is given by

J2(r1, . . . , rN ) = −
∑

i<j

u(rij) (5.14)

and accounts for the cusp condition between up and down spin electrons. Cusps

between same spin electrons are not accounted for because both antisymme-

try and coulomb interaction keep them apart. The electron-electron-ion and

electron-ion-electron-ion Jastrow, conventionally referred to as three- and four-

body, can be thought of as a two-body Jastrow that is not translationally in-

variant. The J34 form used here is a pairing function like that in Eqn. 5.12 and

is given by

J34(r1, . . . , rN ) =
∑

ij

∑

IJlm

gIJ
lmχIl(r

↑
i )χJm(r↓j ). (5.15)

where gIJ
lm are optimizable parameters and l,m index orbitals on nuclei I, J

respectively. This three- and four-body term provides for electron-correlations

substantially beyond the largely cusp related one- and two-body terms and is

able to describe subtle effects like van der Waals forces at the VMC level as has

already been demonstrated in previous work.[61] However, Eqn. 5.15 does not
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include the three-body cusp conditions recently derived by Fournias et al.,[62]

which can improve the quality of the nodes of the JAGP wave function described

here. The effect of the three-body cusp conditions in the energy optimization

and nodal structure is presently under investigation.
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Chapter 6

Hydrogen

6.1 Motivation

Hydrogen is a crucial and fundamental part of most of the systems that are

studied in this work. Certainly the solution to the hydrogen atom is known an-

alytically and very accurate solutions to H2 have been known for a long time.[63]

That being said, the solution to H2 in several theories is important for compar-

ison purposes as well as finding formations energies for other systems. More

importantly, the treatment of hydrogen specific to this work deserves to be de-

tailed and clarified. Carefully describing what was done and why regarding this

simplest of atoms actually demonstrates a template of approach that eliminates

a lot of the trial and error and guess work as the work progresses toward larger

and more difficult systems. I will show how the hydrogen Jastrow is constructed

and why. Also, the Hartree-Fock and PBE-DFT solutions will be compared for

triple and quadruple zeta basis sets. Convergence in DMC will be tested and

comparison will be made between the DMC result using HF and PBE-DFT

optimized geometry and the exact solution.

In every case, H2 should never be taken for granted and has served consis-

tently as a first test to validate that codes are working as expected and input

files are properly constructed. One of the very nice features of H2 is that it is

bosonic and as such has no fixed-node error in DMC so that it is possible to

compute the exact ground state energy to whatever precision one is willing to

pay for. Care must still be taken, however, because the exact solution is the

limiting case of small time step and corresponding time step error. Gaussian

basis functions are used throughout this work and while they have some sig-

nificant advantages they also have some disadvantages as well. As mentioned

in Chapter 5, Gaussian basis functions do a poor job of describing the cusp

conditions because the gradient of a Gaussian type orbital (GTO) is always

zero. Additionally, even a Gaussian contraction cannot properly describe the

tail because Gaussian functions always approaches zero faster than exponential

beyond some radius. Of these two issues, the cusp issue is the most important

for the QMC methods used here.
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6.2 Methods

While a possible solution to the one-body cusp problem is to use pseudo-

hydrogen (hydrogen with a pseudopotential), we prefer and choose to use the

standard Coulomb potential. The cusp can be included in the Jastrow as was

discussed in Chapter 5. However, the cusp is generally very short ranged while

any abnormal tail behavior due to either basis set or theory is very long range.

Much of this work employs uniform cubic B-splines in order to describe trial

function Jastrows and radial functions in general. It is disadvantageous to use

the same high resolution B-spline to describe both the short range cusp behavior

and the long range tail behavior. For this reason a double Jastrow will be used

to describe hydrogen. A high resolution short range Jastrow will describe the

cusp while a lower resolution long range Jastrow will describe the tail. A final

note is that the electron-electron Jastrow (for H2) does not require a double

Jastrow, however, it should be as extensive as possible.

Using B-splines certainly offers many advantages, not the least of which is

their flexibility to describe unknown Jastrow forms. However, B-splines as used

here are necessarily of limited range and have a specific cutoff which is specified

in advance and should match the physics of the problem. In conducting many

studies, too numerous to include here, I have found that specifying a the B-

spline cutoff to land in a region of relatively high electron density can result in

spikes (or strong ripples) in the local energy on and around the cutoff sphere

which can result in an increased time step error. On the other hand, using too

long of a cutoff results in insufficient sampling of the tail region which results in

the Jastrow being ill-defined and can cause problems in the optimization of the

Jastrow. The most straight-forward means of addressing this issue is to plot the

charge density as a function of the radius and attempt to extend the Jastrow

as far a possible.

6.3 Results and Discussion

Consider the plots of an ideal PBE-DFT hydrogen Jastrow given in Fig. 6.1.

Both plots are of the same Jastrows. The two Jastrows in each figure, indicated

by red and blue, correspond to a 3- and 4-zeta basis respectively. Notice that

the main difference is that the wiggles in the 3-zeta basis are more pronounced.

Figure 6.1a gives the long range view extending out to 8 Bohr so that it is clear

there is a very small cusp region near the origin. Figure 6.1b gives an expanded

view near the origin so the fine structure of the Jastrow can be seen. As it

turns out, the first and second hump are most always present even in molecular

calculations. These vary over a vary small range and are not well described by

a long range Jastrow unless a lot of variables are used. In order to address this,

a double Jastrow will be employed. A short range Jastrow with resolution of

0.1 Bohr extending out to 0.6 Bohr and a long range Jastrow with resolution of
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0.5 Bohr extending out as far as practical, in this case 8 Bohr.

Regarding geometry optimization and basis sets. I have found through expe-

rience that the difference between 3- and 4-zeta in terms of geometry optimiza-

tion is very minimal. While it might seem somewhat anecdotal, consider the

PBE-DFT and HF plots of H2 given in Fig. 6.2. By inspection it appears that

the curves are more or less offset vertically. This is not strictly true of course,

but it should be clear that the optimal geometry will not change much while the

energy will changes significantly with basis. I can say through experience that

this holds basically true even for the the most complicated molecular systems

presented in this thesis research.

Converging DMC results for time-step error is always a concern. For this

reason I use H2 to show that indeed the Jastrow setup described above does

indeed result in good convergence at a sensible time-step. H2 is a very nice

example of this because the cusp conditions are in play but there is no fixed

node error so that in principle as accurate an answer as desired can be obtained.

Results are presented in Fig. 6.3. Convergence is found to occur somewhere

around τ=0.02 and 0.04. Excellent agreement is seen when plotted against what

is essentially the exact answer to eight figures.[63].
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Figure 6.1: Both figures above show the ideal Jastrow for atomic hydrogen
when the trial function is derived from PBE-DFT. A Slater-Jastrow composed
of the PBE-DFT single-body orbital and the above Jastrow results in the exact
solution for atomic hydrogen. The top figure (a) shows the long range behavior
while the bottom figure (b) shows the cusp and short range behavior. The
basis sets used are aug-cc-pVTZ and aug-cc-pVQZ indicated by red and blue
respectively.
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Figure 6.2: Both figures above show the potential energy curve of H2 with
respect to bond length. Red and blue correspond to aug-cc-pVTZ and aug-cc-
pVQZ respectively. (a) Shows the PBE-DFT results while (b) shows the HF
results.
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Figure 6.3: DMC potential energy surface using a PBE-DFT trial function with
B-spline Jastrow for both one- and two-body terms. Both Jastrows use a an 8
Bohr cutoff and 0.5 Bohr resolution. The one-body Jastrows has an additional
short range Jastrow with 0.6 Bohr cutoff and 0.1 Bohr resolution.
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Chapter 7

Hydrogen on Benzene

The work in this chapter was conducted in collaboration with my coworkers1

and has already resulted in a publication in the Journal of Chemical Physics in

2008.[17] This study was the first major research focus of my thesis work for

several reasons and lends perspective and insight to QMC study of hydrogen

storage systems. It should be noted that previous work had already indicated

this system as weakly bound. Weak binding systems are difficult for many the-

ories and QMC methods are no exception. Thus hydrogen on benzene is an

excellent test to see how well our methods perform. Also, we compare to signif-

icantly different trial wave function forms, the Slater-Jastrow and the JAGP or

geminal trial functions. Essentially, we would like to establish if the cancellation

of fixed-node and pseudopotential localization errors resulting from a SJ trial

function with PBE-DFT single-body orbitals is sufficient in sensitive systems.

As a matter of practicality, the SJ form is desirable due to the many well tested

tools already available to generate the Slater part of the trial function and a

significant reduction in the number of parameters to optimize.

The details of hydrogen binding on benzene present additional concerns.

We are testing PBE-DFT on a system where van der Walls (VdW) or disper-

sion forces play a significant role. The PBE-DFT functional is not designed to

capture correlations due to these effects, but those effects can in principle be

recovered in DMC using a PBE-DFT trial function. In addition, the benzene

Figure 7.1: Standard picture describing the resonating valence bond in benzene.
This can be understood as benzene being in a superposition of two competing
stable bond configurations.

molecule involves a resonating valence (RVB) bond between the carbon atoms

which is shown diagrammatically in Fig. 7.1. It is not clear a priori that the

nodal surface of a Slater determinant is sufficient at the DMC level to capture

RVB correlation effects. The extent to which the fixed-node DMC recovers those

1The authors of this paper (in order) are myself, Michele Casula, Jeongnim Kim, Sandro
Sorella, and Richard M. Martin.
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correlations effects needs to be tested.

The JAGP trial function, which was described in chapter 5 may literally be

interpreted as a superposition of bonds similar to the resonating valence bonds

picture first proposed by Pauling in 1939 [56] and is therefore seen as ideally

suited as a strong comparative standard. This wave function is even versatile

enough to describe pairing in the BCS wave function for superconductivity and

strongly-correlated electrons in transition metals. Recent applications include

benzene,[57] benzene dimers interacting via weak van der Waals forces,[58] and

the iron dimer.[59] Since the H2 binding energy is expected to be small, the

quality of the trial wave function is all the more important. The quality of this

trial function form is enhanced because the VMC optimization involves the de-

terminant in addition to the Jastrow so that correlation effects, including those

due to VdW, can be accounted for in the nodal surface. Since the trial functions

are significantly different, the sensitivity of the fixed-node approximation can

be assessed.

7.1 Computational details

7.1.1 Slater-Jastrow trial function

The Slater part of the Slater-Jastrow trial function (see Sec. 2.1) was con-

structed of single-body orbitals via the Perdew-Burke-Ernzerhof [29, 30] (PBE)

functional in DFT theory using the Gaussian03 [64] computer code. The single

body orbitals are built of a VTZ Gaussian basis [65] modified to include dif-

fuse functions from the aug-cc-pVTZ basis.[66] We chose to use a very simple

Jastrow factor because our goal was to improve DMC efficiency as opposed to

obtaining a well converged binding curve at the VMC level. The Jastrow factor

we applied to the Slater determinant is a Wagner-Mitas form [67] modified so

that the electron-ion and electron-electron cusp conditions are fulfilled. The

one- and two-body Jastrow functions, as defined in Eqns. 5.2 and 5.8, are given

by

JI(riI) =
∑

k

−(bIkriI + cIk)υIk(riI) (7.1)

and

Jee(rij) =
∑

k

−(bkrij + ck)υk(rij) (7.2)

where i, j and I index electrons and ions (i.e. nuclei) respectively, riI and rij are

electron-ion and electron-electron distances, and k indexes the expansion terms.

In our work we used three terms and, when needed, a cusp term. In the above

equations, υk(r) = (1−z(r/rcut))/(1+βkz(r/rcut)), with z(x) = x2(6−8x+3x2)

and parameters b, c, β optimizable (with the exception of those that are cusp

dependent). The function z(x) has the properties z(0) = z′(0) = z′(1) = 0 and

z(1) = 1, so that the Jastrow has a well defined cutoff at rcut = 10 Bohr. Cusps
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between same spin electrons are not accounted for. This is justified because of

the Pauli exclusion principle, which keeps them apart. It should be emphasized

that the single-body Slater orbitals obtained from PBE-DFT are not further

optimized since we would like to check the accuracy of the PBE-DFT nodes

with respect to a more correlated and fully optimized wave function, such as

the JAGP form described below. However, optimizing the above Jastrow is

convenient as it improves the VMC energy and variance and shortens the DMC

projection time, without changing the nodes. This optimization is done using a

stochastic version the conjugate gradient method.

7.1.2 JAGP function

The JAGP bases are constructed from Gaussians as follows. For the AGP

basis we use a contracted (6s6p)/[2s2p] for the carbon atoms, (2s2p)/[1s1p]

for molecular hydrogen’s atomic sites, and a single s Gaussian for benzene’s

hydrogen sites. For the Jastrow we use an uncontracted (3s2p) basis for the

carbon sites, an uncontracted (1s1p) for molecular hydrogen’s atomic sites, and a

single s Gaussian for benzene’s hydrogen sites. Each atomic basis in the Jastrow

includes a constant that generates additional electron-ion terms when multiplied

by other orbitals χbm in Eqn. 5.15. For benzene’s hydrogen constituents we used

just a single s Gaussian both in the AGP and Jastrow geminals, since they are

not supposed to play a key role in the interaction between the hydrogen molecule

and the benzene ring. The fully optimized benzene basis included in the JAGP

wave function gives a quite good variational energy for aromatic rings.[57] An

analysis of the basis used for the hydrogen molecule will be given in Sec. 7.2.1.

7.1.3 Methods

In setting up our Hamiltonian, we use the Born-Oppenheimer approximation, a

Hartree-Fock norm conserving soft pseudopotential for the He core of carbon2,

and the bare Coulomb potential for hydrogen and electron-electron interactions.

Our procedure is to start with a trial wave function which includes variational

parameters (see Chap. 5 for the forms employed in this work). We proceed to

optimize its energy and variance at the VMC level using minimization methods

suitable for the particular form.[68, 69, 48, 70] The resulting analytic wave func-

tion is projected to the FN ground state using DMC methods[47, 18] recently

developed to yield a stable simulation and an upper bound of the ground state

energy even for non-local pseudopotentials.

As we mentioned above, we use the full electron-nucleus Hamiltonian except

for the carbon core which is replaced by a pseudopotential. This leads to better

statistics due to a narrower energy scale, a reduction in the number of optimiza-

tion parameters, a more stable optimization of our JAGP wave function,[48] and

2The pseudopotentials we used are norm-conserving Hartree-Fock generated by E. Shirley’s
code with the construction by D. Vanderbilt, Phys. Rev. B 32, 8412 (1985).
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a larger DMC time step needed for convergence, which results in a cheaper com-

putational cost of the simulation. On the other hand, its drawback is that part

of the fully local Coulomb potential is replaced by a non-local pseudopotential

Vnon-local that is angular momentum dependent. Within the VMC framework

the corresponding angular integration of the non-local potential remains possi-

ble since the wave function is known analytically. However, problems arise in the

FN DMC because the FN ground state is given only by a stochastic sampling.

A partial solution is the localization approximation, where the trial (or guiding)

wave function ΨG is used to approximate the projected ground state so that

the non-local pseudopotential terms can be evaluated.[44] However, numerical

instabilities are introduced and the projected energy is no longer a variational

upper bound of the original non-local FN Hamiltonian.

Our FN DMC calculations are done with either continuous or lattice reg-

ularized (LRDMC) moves both of which utilize a common means of treating

the non-local part of the pseudopotential. In contrast to the localization ap-

proximation, we use a breakup[47, 18] of the non-local potential that localizes

the positive matrix elements into the branching term while treating the nega-

tive matrix elements as a non-local diffusion operator sampled via a heat bath

scheme.[18] The details of this procedure are given in Sec. 4.4.

Our SJ calculations were done using continuous space DMC with QMC-

PACK [53]. This code provides many features that make it easy to work with

SJ wave functions. The LRDMC method, available in the TurboRVB,[71] has

been applied to the JAGP wave function after a full optimization of its param-

eters. We used two optimization procedures. For the SJ work we employed the

method of conjugate gradients (CG) introduced by Hestenes and Stiefel[68] in

1952. This is a first-derivative method that finds the minimum of a cost function

(in our case a linear combination of the variance and the energy), in a number of

steps significantly smaller than the standard steepest descent method, because

for a quadratic cost function it converges in a finite number of iterations, at most

equal to the dimension of the vector space.[25, 26] We optimized 10 parameters

of the Jastrow functions but used the same VTZ basis set at all hydrogen-

benzene molecular separations. However, the statistical noise inherent in the

QMC framework limits the applicability of our CG implementation to systems

involving not too many parameters, such as our SJ optimization. The JAGP op-

timization, on the other hand, involves a large number (∼ 1000) of parameters,

mainly coming from the λlm
ab (Eqn. 5.12) and gab

lm (Eqn. 5.15) matrices in the

AGP and Jastrow geminal expansions over the atomic basis set. Therefore, an

optimization technique robust under stochastic conditions is required. For this

we used the stochastic reconfiguration (SR) method recently introduced by one

of us (S.S.) [69] in conjunction with subsequent improvements, [48, 72, 73, 70]

including Hessian acceleration which is explained in Ref. [48], that have been

shown to be very efficient in minimizing the variational energy.
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7.2 Results

In this section we present results for hydrogen-benzene binding where the hydro-

gen molecule is oriented along the C6 symmetry axis of the benzene molecule.

Previous studies[74, 75] found this configuration the most stable. Here, we do

not take into account other possible orientations, because our goal is to check

the accuracy of different QMC wave functions and provide benchmarks for the

lowest energy configuration. In order to resolve its potential energy surface, we

consider the system at different molecular center-of-mass separations R. In our

QMC calculations we have kept the geometry of each molecule fixed and close

to its experimental structure.3 We checked the effect of relaxing the geometries

at the MP2 level and found an energy lowering on the order of µHa, indicating

this effect is completely negligible.

We emphasize that our QMC results do not include any corrections for basis

set superposition error (BSSE). The binding curves and the final results for

binding energies and distances are determined from directly calculated energy

differences with the largest computed distance (R = 15 Bohr) taken as the

zero energy reference. On the other hand the results presented for the DFT

calculations have included a correction (see Sec. 2.3 for a description); we

quantified the BSSE using PBE-DFT using the VTZ basis with added diffuse

functions. In that case, the BSSE correction was 0.39 mHa, roughly half the

corrected binding energy which was found to be 0.79 mHa at 6.45 Bohr.

The BSSE arises due to an incomplete basis set, and it is important to point

out that the magnitude of the effect is different in the various QMC methods.

In VMC the BSSE are due to the finite basis and the consequences can be

understood using the same arguments as for other variational methods. In the

present work, the error is greatly reduced because we fully optimize the AGP

and Jastrow bases along with all exponents at each R. In DMC methods, the

basis is complete in the continuous configuration space, and the only inherent

limitation is the fixed node (FN) approximation. Since we use nodes determined

with a finite basis there is necessarily some error due to superposition; however,

the effect upon the final DMC energies is greatly reduced since the diffusion

algorithm leads to the best possible estimate of the energy within the nodal

constraint.

Our results support this analysis and justify the conclusion that the BSSE

errors are negligible for the QMC calculations reported here. The good agree-

ment between the VMC and DMC JAGP results, presented in Subsec. 7.2.1,

highlights that the basis set superposition bias is not relevant (smaller than

the statistical error of ∼ 0.2 mHa) for the fully optimized basis set used in the

JAGP wave function, while the agreement between the projected SJ and JAGP

energies, shown in Subsec. 7.2.2, suggests that the FN bias is negligible.

3The actual bond lengths used in this work are: C − C = 2.63 Bohr, H − C = 2.04 Bohr,
and H−H = 1.40 Bohr. They are close to the best experimental and theoretical values.[76, 77]
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It should be noted that there is another possible kind of basis error that can

also occur due to restrictions in the trial wave functions. If the trial functions are

zero (or very small) in regions of configuration space, then the DMC calculation

may not properly sample the full space. This can happen particularly in the

tails of the wave functions, and it is important to ensure that the basis includes

sufficiently diffuse functions so that the tail regions are properly sampled. This

is especially relevant for calculation of weak binding energies with small overlap

in the tails of the molecular wave functions.

Finally, we note that a further possible source error arises through use of a

pseudopotential to replace the effect of the cores of the carbon atoms. In the

previous section we discussed the procedures for treating the errors due to use of

non-local pseudopotentials in DMC. Errors due to these and other effects of the

pseudopotential should cancel in the energy differences, because the effects occur

mainly in the core region, which changes very little as a function of the distance

between the molecules for any separation relevant to the present problem.

7.2.1 Jastrow correlated Antisymmetric Geminal Power

We optimized the variational JAGP wave function by means of the most re-

cent version of the stochastic reconfiguration energy minimization with Hessian

acceleration.[48] Although the basis set used here is quite compact, it turns out

that the variational energies are very accurate, as we optimize both the deter-

minant and Jastrow part. For instance, the basis set for the hydrogen molecule

is a (2s2p)/[1s1p] Gaussian in the AGP expansion, while it is an uncontracted

(1s1p) Gaussian plus a constant in the Jastrow geminal. In spite of this small

basis set, the variational energy of an isolated H2 molecule is −1.174077(29),

very close the exact result (−1.174475).[78] The second Gaussian in the s and p

contractions of the hydrogen AGP is fairly diffuse, their exponents ranging from

0.05 to 0.1, as the distance R between the benzene molecule and the hydrogen

dimer shrinks from 15 to 6 Bohr.

We found that the inclusion of the diffuse orbitals in the basis set of the

hydrogen molecule is crucial for the hydrogen-benzene binding, both at the

VMC and LRDMC level. On the other hand, some Gaussians related to the

contracted p orbital of the benzene ring become more delocalized in the binding

region. This is reasonable, because the interaction is supposedly driven by the

resonance between the carbon pz and molecular hydrogen s components of the

total wave function. Therefore, the minimal basis set should include diffuse

orbitals on both sides. We would like to stress that the extension of those

diffuse orbitals is not determined a priori, but is found by optimizing the wave

function with the necessary variational freedom.

After a full optimization of the variational wave function at several distances

(R = 5, 5.5, 6, 7, 8, 10, 15 Bohr) we carried out VMC and LRDMC simulations

to study the properties of the system, in terms of energetics and charge density
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distribution. The LRDMC kinetic parameter in Eqn. 4.14 which optimizes the

lattice space extrapolation is µ = 3.2, that allows one to work with a quite

large (and highly efficient) mesh size (a = 0.25 a.u.). Properly setting the

parameters of the LRDMC effective Hamiltonian is crucial in order to speed up

the simulation, and so be able to resolve the small binding energy of this system.

To check the convergence of our LRDMC energies with respect to the mesh size,

we computed the energy difference E(R = 6) − E(R = 15) for a = 0.125, 0.25,

and 0.5, as reported in Tab. 7.1. It is apparent that the energy differences are

converged within the error bar of 0.25 mHa in the lattice space range taken into

account. It is therefore accurate to work with a = 0.25.

Table 7.1: LRDMC binding energy (E(R = 6) − E(R = 15)) dependence on
mesh size a. The energies are reported in mHa, the lengths are in Bohr.

a Ebinding

0.125 1.53(24)
0.25 1.57(19)
0.5 2.07(23)

The results of our calculations of the VMC and LRDMC dispersion curves

are presented in Fig. 1a, 7.2a, which shows the energy as a function of distance

R relative to the value at R = 15 Bohr for each of the methods. There is

excellent agreement between the two curves, with a difference that is less than

0.18 mHa for most points. Of course, the diffusion calculation leads to a lower

total energy than the variational calculation in every case, but the agreement

of the two methods for the energy difference supports the idea that our results

are accurate and the calculated binding energy is close to the exact value.

In order to extract the values for the equilibrium distance R0 and the binding

energy Eb, we fitted our LRDMC points with the Morse function:

V (R) = E∞ + Eb

[

e−2a(R−R0) − 2e−a(R−R0)
]

, (7.3)

where a is related to the zero point motion of the effective one dimensional

potential V (R), and E∞ is chosen to be E(R = 15), i.e. the zero of energy.

This choice is motivated by the fact that the overlap of the wave function in

between the two fragments is negligible at that distance. Beyond that point the

variation of V (R) up to infinity is much smaller than the statistical accuracy of

our points. We estimated the error on the fitting parameters by carrying out

a Bayesian analysis of the fit, in a way similar to what described in Ref. [79].

Our result is 6.33(15) Bohr for the equilibrium distance, and 1.53(12) mHa for

the binding energy, as reported in Tab. 7.2.
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Table 7.2: Fitting parameters of the Morse function (see Eqn. 7.3) which
minimize the χ2 of the JAGP-LRDMC and SJ-DMC data sets. Their error is
computed by means of a Bayesian analysis based on the statistical distribution
of the FN energy points. The energies are reported in mHa, the lengths are in
Bohr.

JAGP SJ
a 0.56(7) 0.66(9)
Eb 1.53(12) 1.43(16)
R0 6.33(15) 6.31(21)
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Figure 7.2: QMC results for the dispersion energy of the hydrogen-benzene bond
as a function of intermolecular distance R with zero energy difference taken at
R = 15 Bohr. (a) Compare variational and the diffusion results using the cor-
related geminal wave function, labeled JAGP-VMC and JAGP-LRDMC. (b)
Compares diffusion results using two types of trial functions, the JAGP (the
same as in Fig. a) and the Slater-Jastrow function labeled SJ-DMC. Morse fits
of the diffusion data for the two wave functions are also plotted as continuous
curves. The close agreement of all three results is strong evidence that the bind-
ing curve is accurate and the analytic JAGP function is a reliable representation
of the fully correlated many-body valence wave function.

7.2.2 Slater-Jastrow Trial Function

At this point, it is interesting to make a comparison with a simple SJ wave

function to determine whether the use of the JAGP is necessary to get the correct

dispersion energy out of the FN projection. The Slater part is constructed of

PBE-DFT single-body orbitals and a simple Jastrow as described in Section

7.1.1. We chose to use a simple Jastrow factor because our goal was only to

improve DMC efficiency as opposed to obtaining a well converged binding curve

at the VMC level. The Jastrow factor was optimized within the VMC framework
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using the conjugate gradient method,[68] as explained in Sec. 7.1.3. While the

SJ variational energy is quite poor, its quality is not directly reflective of the

DMC energy, which depends only on the nodes of the trial wave function.

Table 7.3: Slater-Jastrow trial function DMC binding energy (E(R = 6) −
E(R = 15)) dependence on time step τ . The energy extrapolated for τ → 0 is
within one error bar from the point at τ = 0.01. Therefore, we chose τ = 0.01 as
the time step for all our DMC simulations. The energies are reported in mHa,
the time steps are in Ha−1.

τ Eb

0.01 1.38(19)
0.02 0.93(19)
0.04 0.64(15)

We found that the DFT nodes are very good by carrying out DMC simu-

lations with the non-local scheme. Our projection was done in time steps of

τ = 0.01 which we found to be converged as reported in Tab. 7.3. Remarkably,

the DMC-SJ energies are in very good agreement with the LRDMC-JAGP data

points (see Fig. 7.2b. Indeed, the SJ fitting parameters of the Morse dispersion

curve (Eqn. 7.3), such as binding energy, equilibrium distance, and curvature,

differ from the JAGP ones by less than one error bar (Tab. 7.2). This consistency

between different trial wave functions signals that the FN bias is negligible and

the results are well converged. Moreover, in addition to the nodes of the PBE

wave function being good, the PBE binding energy is underestimated only by a

factor of 2 with respect to our best value. It is notable that the PBE functional

performs quite well, even though it does not include any VdW contribution. In

the case of a pure VdW bond, the PBE result should be much poorer, as already

pointed out by Hamel and Côté.[74] This is suggestive of a more complex bind-

ing mechanism which goes beyond the standard physisorption. We will focus

on this point in Sec. 7.4.

7.3 Comparison to other work

The hydrogen-benzene system has been the subject of several theoretical works,

whereas to our knowledge no direct study of this system has been carried out

on the experimental side. Hydrogen adsorbed on metal-organic frameworks

(MOF), where benzene-like structures serve as ligands, has been studied by

Rosi et al.[10] who performed inelastic neutron scattering (INS) measurements.

The INS data could be related to the rotational states of hydrogen adsorbed

over benzene. However, the binding sites in the MOF structure are not known

with certainty, and thus it is hard to find a one-to-one correspondence between

the experiment and the isolated hydrogen-benzene compound.

Given the lack of direct experimental data for this system, we compare our

results with those from empirical models that are often used to estimate complex
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Figure 7.3: Results for hydrogen-benzene binding as a function of intermolecular
distance R using four theoretical methods. The JAGP-LRDMC data and Morse
fit with zero binding energy taken at R = 15 Bohr is shown in solid black.
The PBE-DFT counterpoise corrected result using the VTZ basis plus diffuse
functions from the aug-cc-pVTZ basis is shown in solid green. The Crowell
and Brown empirical potential (shallowest) that takes into account the bond
asymmetry of the sp2 hybridized carbon atom is shown in dotted blue. The
Mattera et al. empirical potential that seeks to reproduce the hydrogen bound
states over graphite by a much simpler model is shown in dotted red.

system properties, such as the hydrogen storage capabilities of carbon nanotubes

and fullerene nanocages.[80, 81] Here we consider two empirical models, both

derived from experiments of hydrogen molecules scattered on graphite surface,

carried out by Mattera et al..[82] To reproduce their data, they proposed a

simple model interaction between the carbon atoms and the hydrogen dimer

which depends only on the distance from the graphite layers by assuming a

lateral average. This model was improved later by Crowell and Brown,[83]

who constructed an empirical potential based not only on the experimental

scattering data but also on the polarization constants built in the VdW (6,12)

potential. Their model assumes both a radial and angular dependence, which

takes into account the sp2 hybridization asymmetry of carbon atoms in graphitic

and aromatic compounds. We applied these potentials to the hydrogen-benzene

system by summing the terms for the 6 carbons taking into account distance

and, for the Crowell potential, the angle the hydrogen-carbon interaction makes

with the benzene C6 axis. Both empirical potentials significantly underbind the

system, roughly by factors of 2 and 3 respectively when compared to the JAGP

LRDMC results (see Fig. 7.3). More precisely, Mattera’s interaction gives a

binding energy of 0.86 mHa at 5.6 Bohr, while Crowell’s gives a minimum of

0.54 mHa at 6.2 Bohr.
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Hamel and Côté[74] calculated the dispersion curves using DFT with the

local density and generalized gradient approximations (LDA and GGA) where

the GGA is implemented in the PBE density functional.[29, 30] Their calcu-

lations used a plane wave basis with a 60 Ha cutoff. They found that the

DFT-LDA gives the strongest binding (3.30 mHa), while the DFT-PBE bind-

ing is much weaker (0.69 mHa). This is consistent with the general overbinding

of LDA and underbinding of PBE. It is also well known that DFT is not a

favorable method for systems where van der Waals forces play an important

role;4 in those cases, MP2 and CCSD(T) can be applied with more reliabil-

ity. Hamel and Côté also calculated binding curves using those theories. They

found MP2/6-311+G(2df,2p) binding of 1.58 mHa and CCSD(T)/6-31+G(d,p)

binding of 0.65 mHa.

Perhaps the most careful and accurate MP2 and CCSD(T) calculations were

done by Hübner et al.[75] In order to resolve the weak interaction between

hydrogen and benzene, high accuracy is required, and so a large basis set is

needed to reduce both basis set superposition and incompleteness errors which

are a significant fractions of the binding energy (the BSSE was found to be as

much as ∼ 25% of the final estimated binding). On the other hand, the use of

a larger basis set is limited by a poorer scaling of the calculations, particularly

at the CCSD(T) level of theory, which is the most expensive. In their work,

Hübner et al. optimized the binding distance using MP2 with the TZVPP basis.

They found a center-of-mass distance of 5.80 Bohr and a binding energy of 1.47

mHa. This geometry was then used for further MP2 and CCSD(T) calculations.

The CCSD(T) method with the same TZVPP basis gives 1.17 mHa, while the

MP2 theory was pushed up to a aug-cc-pVQZ′ basis to give a binding of 1.83

mHa, a significant increase from the TZVPP basis. At this point, it is possible

to estimate the true binding energy by correcting the best MP2 energy with

the CCSD(T)-MP2 difference obtained at the TZVPP level. This gives a value

of ∼ 1.5 mHa, remarkably close to the JAGP LRDMC binding of 1.53 ± 0.12

mHa, found in this work.

7.4 Analysis of the bonding

In order to investigate more deeply the physics of hydrogen adsorbed on benzene,

we study the induced difference in electronic density at the equilibrium bond

distance with respect to the separated fragments. For this study we compare

our best DMC results to the density functional calculation using the PBE func-

tional. The QMC densities are calculated from the optimized correlated geminal

(JAGP) as a mixed estimator, which is an accurate representation of the DMC

4Note that in our work, we used the single-body orbitals from the PBE-DFT calculation
in the Slater-Jastrow wave function. The DMC energies depend only on the accuracy of
the nodes of the many-body wave function. The DMC calculation includes van der Waals
attraction and other terms and the result is independent of the errors in the PBE functional
for the energy.
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results since the diffusion calculation leads to only small changes (within the er-

ror bar) from the VMC density. The contour plot in Fig. 7.4 shows the difference

in the calculated electron density at the separation R = 6 Bohr. Here, the elec-

tron density of the isolated molecules has been subtracted from the combined

system so that the change in charge distribution due to bonding is apparent.

In this figure the benzene ring lies in the xy plane at z = 0 and the hydrogen

molecule is oriented along the z axis, with its center of mass at z = 6 Bohr.

The two dimensional plot in the yz plane is generated by integrating the density

distribution over the x coordinate. As one can see, the hydrogen molecule is

polarized by the electronic repulsion with the benzene cloud, which pushes the

electrons to the opposite side of the molecule, leading to a static dipole moment

on the hydrogen. On the other hand, the density redistribution in the benzene is

non trivial, and shows patches of charge accumulation and depletion. To catch

the net effect of this redistribution, we integrated the density also over the y

coordinate, and obtained an effective linear density profile, plotted in Fig. 7.5.

Here, it is apparent that the overall effect on the benzene is the formation of

another effective dipole moment, oriented to the same direction as the static

dipole moment on the hydrogen molecule, which lowers the electrostatic energy.

Notice that in Fig. 7.5 we have plotted separately the VMC and the LRDMC

mixed estimate of the densities. The close agreement supports our conclusion

the VMC wave function is very accurate not only for the energy but also for

other properties such as the density.

At large distances the attractive interaction is due to VdW dispersive forces,

which is included in the Monte Carlo calculations. At short distances the inter-

action is repulsive due to overlap of the closed shells, which would lead to density

displaced outward on both the hydrogen and benzene, i.e. opposite dipoles on

the two molecules. However, Figs. 7.4 and 7.5 show that the hydrogen-benzene

bond is not a pure VdW interaction, since in the binding region also electro-

static effects come in with the onset of dipolar interactions that lower the charge

repulsion. For comparison, density differences calculated using the PBE density

functional are also shown in Figs. 7.4 and 7.5 at the separation R = 6 Bohr.

Of course, the PBE functional does not include VdW interactions so that the

binding decreases too rapidly at large distance as shown in Fig. 7.3. Never-

theless, near the equilibrium distance the density is similar to the QMC result

but with smaller magnitude of the change in density, which is consistent with

the fact that the PBE functional underbinds the system. It is well known that

GGA functionals like PBE tend to underbind because they favor systems with

larger gradients, whereas LDA tends to overbind molecules and solids since it

favors more homogeneous systems.[26] Recent work by Langreth et al.[84, 85]

has led to improved functionals including van der Waals interactions; however,

they have not been considered here.
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Figure 7.4: Contour plots of the difference in projected electronic charge per
unit area between hydrogen-benzene separated by 6 Bohr and the isolated hy-
drogen and benzene using JAGP-LRDMC and PBE-DFT. The x-axis has been
integrated over so that the charge per unit area has been projected into the
yz-plane. (Left) The areal charge density difference is a mixed estimate of
LRDMC calculations with a JAGP trial wave function. (Right) Computation is
done within the PBE-DFT framework using the VTZ basis plus diffuse functions
from the aug-cc-pVTZ basis.

7.5 Discussion

These benzene results, while interesting in and of themselves, have important

implications for the rest of this work. In particular, the SJ trial function is

found to be comparable to the more sophisticated and computationally de-

manding JAGP in recovering the correlation energy of the hydrogen binding on

benzene. Further, this particular test case represents a strong challenge for our

methods since the binding energy measured is between 5 and 10 times smaller

than those associated with reversible hydrogen storage.[11] Thus for efficiency

and simplicity, the SJ will be used in the remainder of this work since this trial

function has demonstrated excellent results using just standard DFT methods

and a Jastrow factor with significantly fewer optimizable parameters. Also,

the standard DMC implementation with the variational treatment of non-local

pseudopotentials will be used. The increased computational stability and can-

cellation of errors in localization has proven itself desirable and highly effective

even in this sensitive case. Altogether, these methods represent an improvement

over PBE-DFT when used by itself. As study moves to include the transition

metal titanium, checks will be conducted with these said methods as the first

choice.
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Figure 7.5: Difference in linear electronic charge density between hydrogen-
benzene separated by 6 Bohr and the isolated hydrogen and benzene using three
theories. The x- and y-axes have been integrated over so that the charge per
unit length has been projected into the z-axis. The solid red data with error bars
show the induced charge changes using the analytic JAGP wave function at the
VMC level. The dotted blue data with error bars show the mixed estimate of
the density given by the LRDMC projection of the JAGP trial wave function.
The dotted green line shows the PBE-DFT result using the VTZ basis plus
diffuse functions from the aug-cc-pVTZ basis.
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Chapter 8

Atomic Titanium

The choice in studying systems that involves the transition metal titanium

presents certain challenges all by itself. While the Monte Carlo methods used in

this work offer an advantage in scaling, they are still costly. Pseudopotentials

allow for a significant reduction in computer time and statistical fluctuations

due to the elimination of the higher energy core electrons. This work chooses

to use the pseudopotential recently developed by Burkatzki, Filippi and Dolg

(BFD) in 2008 for use in QMC calculations.[19] Not only this, the initial work

presented here allows for experience to be gained regarding d-states and role

played in the overall wave function.

While the BFD Ti pseudopotential has undergone testing it has not been

widely disseminated and thus it seemed good to check. Here the pseudopotential

is tested in its ability to reproduce the 1st and 2nd ionization potentials and the

lowest σ-excitation using the QMC methods specific to this work. Specifically,

Slater-Jastrow trial functions will be compared using single-body orbitals from

two theories, HF and PBE-DFT. Triple and quadruple zeta basis sets are used

and compared. Not only this, it will allow for testing of the Jastrow factor which

will be applied to the final adsorption systems of interest.

It is important to note that the BFD pseudopotential has a neon core so

that the 3s23p6... are treated as valence states and only the tightly bound

1s22s22p6 (associated with the electronic configuration of neon) are treated as

core states. This has been shown by many people to be very accurate and es-

sentially equivalent to all-electron calculations. Some early work used an Argon

core pseudopotential in which the 3d states are treated as valence states, but the

3s and 3p are treated as core states as a part of the pseudopotential.[86] This

can lead to large errors because the 3s, p, and d states in the same shell have

large spatial overlap and large exchange that is not accurately treated by this

approximation. While other work using auxiliary-field MC uses pseudopoten-

tials with longer cutoffs rc due to certain advantages specific to those methods

in treating non-locality [87], here a harder pseudopotential having shorter cutoff

rc is used. This is due to the necessity of localizing the pseudopotential; the

BFD version we use is designed with this particular need in mind.[19]
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8.1 Angular momentum and spin states of

atomic Ti

We constructed the various spin and angular momentum states as follows. First

we recognized that in order to get the proper spin state of the Ti atom, the

spin paired single-body states must be spatially identical. When they are not

identical spin contamination is introduced. In general this did not have a great

effect on our results. To construct the proper angular momentum states it is

necessary to combine the proper spherical harmonics. These states are some-

what obvious when complex orbitals are used, however, this is not so much the

case when a single determinant of real valued orbitals is used. Each state with

its ionization, spin and angular momentum requires the construction of a proper

real space state for use in our methods. The below derivation shows how those

real states are determined.

8.1.1 General

We start by establishing some language and results that apply to both Ŝ and

L̂. Consider the case of a single Slater determinant wave function with single

body orbitals given by χi(x) ≡ φi(r)α(w) or χi(x) ≡ φi(r)β(w) where α and β

are spin up and spin down respectively, φ is the spatial part of the orbital, and

x ≡ (r, w) the space-spin coordinate. We further stipulate that all the orbitals

are mutually orthonormal. This allows us to look at the unrestricted orbital

case where the spatial part of the α orbitals don’t exactly match the that of the

β orbitals.

Before moving on to more specific results regarding Ŝ
2

and L̂
2
, it will be

useful to work out some general properties of single body operators operating

on Slater determinants. Define

Ô
Σ ≡

∑

i

Ô
i

(8.1)

where the sum is over all coordinates and Ô
i

operates on coordinate xi. Note

that Szabo and Ostlund make similar definitions (see Eqn. 2.101 of Ref. [22]).

We start by showing

Ô
Σ
Ψ(X) =

∑

i

Ψ(X)|χi→Ôχi
(8.2)

where Ô is operating on orbital χi using an implied dummy coordinate. Thus

the operator Ô
Σ

can be thought of as acting on orbitals rather than coordinates,

an important distinction. Recalling that a Slater determinant can be written as

Ψ(X) = N !−1/2
P

∑

p

(−1)℘(p)χp1
(x1)χp2

(x2)...χpN
(xN ) (8.3)
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where the sum is over all permutations P of the coordinates (this gives N !

terms) and ℘(p) counts the permutations in mapping p. We proceed

Ô
Σ
Ψ(X) =

∑

i Ô
i
Ψ(X)

=
∑

i Ô
i
N !−1/2

∑

P

p (−1)℘(p)χp1
(x1)χp2

(x2)...χpN
(xN )

= N !−1/2
∑

P

p (−1)℘(p)
∑

i Ô
i
χp1

(x1)χp2
(x2)...χpN

(xN )

= N !−1/2
∑P

p (−1)℘(p)
∑

i Ô
pi

χp1
(x1)χp2

(x2)...χpN
(xN )

=
∑

iN !−1/2
∑P

p (−1)℘(p)Ô
p−1

i χp1
(x1)χp2

(x2)...χpN
(xN )

=
∑

i Ψ(X)|χi→Ôχi

(8.4)

where

Ψ(X)|χi→Ôχi
= cΨ(X)|χi→χ′

i
and χ′

i ≡
1

c
Ôχi −

1

c

∑

j 6=i

χj〈χj |Ô|χi〉. (8.5)

Here, χ′
i is the new ith orbital and is equal to Ôχ′

i after subtracting all the linear

dependence with the remaining orbitals and normalizing (factor c). This is just

a linear algebra result - see Eqn. 1.40 in Szabo and Ostlund for reference.

Writing the Ŝ
2

and L̂
2

operators in a useful form will greatly simplify our

work. We will will show that

Ŝ
2

= ~Ŝ
Σ

z + Ŝ
Σ

z Ŝ
Σ

z + Ŝ
Σ

−Ŝ
Σ

+. (8.6)

Only the raising and lowering operators Ŝ± ≡ Ŝx ± iŜy and commutation rule

[Ŝx, Ŝy] = i~Ŝz as described in Griffiths are used.[88] Since both Ŝ and L̂ obey

the same algebraic rules the proof is identical for each - just substitute L̂ for Ŝ.

Ŝ
2

= (Ŝ
Σ

x )2 + (Ŝ
Σ

y )2 + (Ŝ
Σ

z )2

= 1
4 (Ŝ

Σ

+ + Ŝ
Σ

−)2 − 1
4 (Ŝ

Σ

+ − Ŝ
Σ

−)2 + (Ŝ
Σ

z )2 using Ŝ± = Ŝx ± iŜy

= 1
2 Ŝ

Σ

+Ŝ
Σ

− + 1
2 Ŝ

Σ

−Ŝ
Σ

+ + Ŝ
Σ

z Ŝ
Σ

z

= 1
2 [Ŝ

Σ

+, Ŝ
Σ

−] + Ŝ
Σ

−Ŝ
Σ

+ + Ŝ
Σ

z Ŝ
Σ

z

= 1
2 [Ŝ+, Ŝ−]Σ + Ŝ

Σ

−Ŝ
Σ

+ + Ŝ
Σ

z Ŝ
Σ

z using i 6= j ⇒ [Ŝ
i

+, Ŝ
j

−] = 0

= 1
2 [Ŝx + iŜy, Ŝx − iŜy]Σ + Ŝ

Σ

−Ŝ
Σ

+ + Ŝ
Σ

z Ŝ
Σ

z using Ŝ± = Ŝx ± iŜy

= −i[Ŝx, Ŝy]Σ + Ŝ
Σ

−Ŝ
Σ

+ + Ŝ
Σ

z Ŝ
Σ

z

= ~Ŝ
Σ

z + Ŝ
Σ

z Ŝ
Σ

z + Ŝ
Σ

−Ŝ
Σ

+ using [Ŝx, Ŝy] = i~Ŝz

or equivalently

= −~Ŝ
Σ

z + Ŝ
Σ

z Ŝ
Σ

z + Ŝ
Σ

+Ŝ
Σ

−.
(8.7)

We can immediately address the first two terms of Ŝ
2

(and L̂
2
) in Eqn. 8.6

above. It is very straight forward to show that

Ŝ
2

= ~
2(

∑

i

mi)(1 +
∑

i

mi) + Ŝ
Σ

−Ŝ
Σ

+. (8.8)
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This result becomes clear when we see

Ŝ
Σ

z Ψ(X) =
∑

i

~miΨ(X). (8.9)

To prove this only Ŝzχi = ~mχi where m = ± 1
2 as described in Griffiths is

needed. Since both Ŝz and L̂z obey the same algebraic rules the proof is identical

for each - just substitute L̂ for Ŝ keeping in mind that m = 0,±1,±2, ...,±l for

L̂z.

Ŝ
Σ

z Ψ(X) =
∑

i Ψ(X)|χi→Ŝzχi

=
∑

i Ψ(X)|χi→~miχi
using Ŝzχi = ~mχi

=
∑

i ~miΨ(X).

(8.10)

Amazingly, without even proceeding into further details the general results

above already completely solve a large number of relevant situations. Namely,

when the three terms in Eqn. 8.8 are zero the solution is trivial. We see that

filled shells don’t contribute to angular momentum. In the work present here

we are primarily concerned with the transition metal triplet states where all

the shells are filled except for 3d. For the purposes of calculating the angular

momentum one only needs to consider states from that shell. These states can

be understood in terms of an antisymmetric two-body function given by

|m1,m2〉 ≡ 1√
2
(Y m1

2 (r1)Y
m2
2 (r2) − Y m2

2 (r1)Y
m1
2 (r2))

where Y m
l are spherical harmonics. By applying the above relationships one

can compute the proper angular momentum states. Those details are presented

in Table 8.1.

Table 8.1: L and ML for several two-body states.

L ML d2 State d3 State

3 3 | 2, 1 〉 | 2, 1, 0 〉
3 2 | 2, 0 〉 | 2, 1, −1 〉

3 1
q

3
5
| 2, −1 〉 +

q

2
5
| 1, 0 〉

q

3
5
| 2, 0, −1 〉 +

q

2
5
| 2, 1, −2 〉

3 0
q

1
5
| 2, −2 〉 +

q

4
5
| 1, −1 〉

q

1
5
| 1, 0, −1 〉 +

q

4
5
| 2, 0, −2 〉

3 -1
q

3
5
| 1, −2 〉 +

q

2
5
| 0, −1 〉

q

3
5
| 1, 0, −2 〉 +

q

2
5
| 2, −1, −2 〉

3 -2 | 0, −2 〉 | − 1, 1, −2 〉
3 -3 | − 1, −2 〉 | − 2, −1, 0 〉

1 1
q

2
5
| 2, −1 〉 −

q

3
5
| 1, 0 〉

q

2
5
| 2, 0, −1 〉 −

q

3
5
| 2, 1, −2 〉

1 0
q

4
5
| 2, −2 〉 −

q

1
5
| 1, −1 〉

q

4
5
| 1, 0, −1 〉 −

q

1
5
| 2, 0, −2 〉

1 -1
q

2
5
| 1, −2 〉 −

q

3
5
| 0, −1 〉

q

2
5
| 1, 0, −2 〉 −

q

3
5
| 2, −1, −2 〉
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8.1.2 Real Atomic Orbitals

The states given in Table 8.1 are for the standard complex spherical harmonics.

However, as mentioned earlier, real wave functions are used in this work. Taking

advantage of the degeneracy of the ML states when spin orbit is not included

allows for the calculation of the energy associated with a given L unambiguously.

It is very straight forward to show that states given by term symbols 3F and
5F can be constructed to be a real single determinant as

3F = |2, 0 〉 + | − 2, 0 〉 (8.11)

and
5F = |2, 1,−1 〉 + | − 2,−1 〉 (8.12)

(where normalization has been neglected). These are the states that will be

looked for in Gaussian09 calculations with care taken to insure that the angular

momentum states are not contaminated.

8.2 QMC methods and dependence on the trial

function

To test the BFD pseudopotential with our methods, single-body calculations are

done using restricted open-shell Hartree-Fock (ROHF) and unrestricted DFT

with the Perdew-Burke-Ernzerhof[29, 30] (PBE) generalized gradient approxi-

mation (GGA) functional. The use of unrestricted orbitals introduces a small

amount of spin contamination, however, this is generally considered to be very

minimal and will be a point of testing. Comparisons between truncated triple-

and quadruple-zeta Gaussian basis sets will be carried out. The truncation in-

volves eliminating any basis function higher than d so that the possibility of

angular momentum contamination is reduced. The basis sets used are those

generated by BFD and can be obtained from their web site free of charge.[89]

The Slater-Jastrow trial functions are constructed from the single-body orbitals

derived from the Gaussian calculations. No single-body cusp conditions are

required due to the use of the pseudopotential. However, the usual electron-

electron cusp condition described in Sec. 5.2 will be imposed.

The Jastrow used here is that of a uniform cubic B-spline. The B-spline is

partitioned with uniform knot spacings or segments and extends out to some

cutoff value. The 0th, 1st, and 2nd derivatives are continuous and go to zero

at the cutoff. The B-splines used in the nucleus-electron and electron-electron

Jastrows have a knot spacing of 0.5 Bohr and cutoffs of 9 and 8 Bohr respectively.

These cutoffs and spacings were chosen after a significant amount of time tuning

parameters so that cutoffs were not so long that regions are under-sampled and

not so short that the cutoff occurred in a region of higher electron density

(resulting in an increased variance). The spacing is chosen so that all important
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features of the Jastrow can be described.

The QMC calculations proceed as follows. Variational Monte Carlo is per-

formed so that the B-spline parameters in the Jastrow can be optimized. This

is done with modified version of a recently developed optimization method by

Toulouse and Umrigar.[90, 91] After optimization is complete, DMC calculations

are done at three time-step values, 0.04, 0.02 and 0.01, to verify convergence to

the zero time-step limit. Localization of the pseudopotential is done by use of

the variational method given by Casula in order to insure a better cancellation

of localization energy errors and improved statistics.[18] Transition energies of

the various states associated can then be calculated and compared.

8.3 Results

Results are present for the study of atomic transition energies in PBE-DFT

and ROHF and DMC. The tables presented are designed to be somewhat self-

explanatory, however, a few more words might help clear up any confusion.

Comparison is made to experimental values (as given by BFD) for the 1st and

2nd ionization potentials and the lowest σ-excitation.[19]

The specific states studied are the ground state of Ti, which has a spin mul-

tiplicity of 3, total angular momentum L = 3 (3F ), and electronic configuration

given by [Ar]3d24s2. The lowest sigma excited state involves the promotion of

an s-state to a d-state so that the spin multiplicity is 5, L = 3 (5F ), and the

electronic configuration given by [Ar]3d34s1. The ground state of the ionized Ti

atom where a single electron has been removed is denoted Ti+1. The removal

of an s-state results in a spin multiplicity of 4, L = 3 (4F ) and electronic con-

figuration [Ar]3d2 4s1. Finally, the ground state of an ionized Ti atom where a

two electrons have been removed is denoted Ti+2. The removal of the second

s-state results in a spin multiplicity of 3, L = 3 (3F ) and electronic configuration

[Ar]3d2.

Table 8.2 presents absolute energy data for the above mentioned states using

PBE-DFT and ROHF theory and bases as mentioned above. Table 8.3 gives

the transition energies between the various states. Most notably, PBE-DFT

gets the wrong ground state for Ti resulting in a negative value for the lowest

σ-excitation. ROHF gives agreement to almost within 5 mHa. PBE-DFT does

better for the 1st and 2nd ionization energies underestimating the first by ∼
5mHa and overestimating the second by ∼ 15mHa. ROHF underestimates both

ionization energies by ∼ 50 and 25mHa for the 1st and 2nd ionization potentials

respectively.

The raw DMC energies at time-step τ=0.01 are given in Table 8.4. This

data is analogous to that for the single-body results in Tab. 8.2. Time-step

convergence results are given for the transition energies in Tab. 8.5 where the

transition data indicates convergence has been achieved at time-step τ=0.01.

Finally a summary of the converged DMC transition energy data is given in
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8.6 with comparison to experiment. DMC results are not found to be strongly

dependent on either single-body orbital theory or basis. The σ-excitation had

the poorest agreement in being underestimated by between about 1 and 5 mHa

with the ROHF trial function showing a slight advantage (all underestimated

the energy). Generally speaking, however, all DMC results are found to be in

reasonable agreement with experiment.

8.4 Summary and Conclusions

The single-body results for ROHF and PBE-DFT by themselves are not in very

good agreement with experiment with the possible exception of the σ-excitation

given by ROHF theory. Even then the result is worse than DMC in every case.

Most notably, PBE-DFT gets the Ti ground state incorrectly. In all cases

spin contamination is found to be very minimal. However, good agreement is

found when either of these theories are used to generate single-body orbitals

for use in the Slater-Jastrow trial function for DMC. DMC results are found

to be weakly dependent on both the single-body theory and basis set as tested

here. Moreover, it appears that the BFD pseudopotential is very suitable for

application on succeeding QMC calculations.

State Configuration Basis ROHF (Ha) PBE-DFT (Ha)

Ti (3F ) [Ar] 3d2 4s2
3-zeta -57.7360051244 -58.1765268969

4-zeta -57.7361591097 -58.1767360526

Ti (5F ) [Ar] 3d3 4s1
3-zeta -57.7112842540 -58.1812624443

4-zeta -57.7113429640 -58.1813639005

Ti+1 (4F ) [Ar] 3d2 4s1
3-zeta -57.5314294075 -57.9299060108

4-zeta -57.5320890513 -57.9307389099

Ti+2 (3F ) [Ar] 3d2 3-zeta -57.0564226421 -57.4155222183

4-zeta -57.0569837398 -57.4165703631

Table 8.2: Results for atomic Ti for PBE-DFT and ROHF with BFD pseu-
dopotential. While the electron configuration given makes reference to the Ar-
gon configuration, it is understood that only the Ne core states are accounted
for through the pseudopotential. Comparisons are made for truncated 3- and
4-zeta basis sets from BFD and are referenced in the main text.
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Transition Basis ROHF PBE-DFT Experiment

σ-excitation 3-zeta 0.0247208704 -0.0047355474 0.030 Ha

Ti (3F ) → Ti (5F ) 4-zeta 0.0248161457 -0.0046278479

1st Ionization Potential 3-zeta 0.2045757169 0.2466208861 0.251

Ti (3F ) → Ti+1 (4F ) 4-zeta 0.2040700584 0.2459971427

2nd Ionization Potential 3-zeta 0.4750067654 0.5143837925 0.4991

Ti+1 (4F ) → Ti+2 (3F ) 4-zeta 0.4751053115 0.5141685468

Table 8.3: Transition energies for atomic Ti for PBE-DFT and ROHF with
BFD pseudopotential. Experimental numbers are included for reference. Com-
parisons are made for truncated 3- and 4-zeta basis sets from BFD and are
referenced in the main text. Of particular note is that PBE-DFT gets the
wrong ground state.

State Configuration Basis DMC-ROHF (Ha) DMC-PBE (Ha)

Ti (3F ) [Ar] 3d2 4s2
3-zeta -58.18216(12) -58.18105(14)

4-zeta -58.18114(12) -58.18269(14)

Ti (5F ) [Ar] 3d3 4s1
3-zeta -58.15280(12) -58.15542(13)

4-zeta -58.15282(11) -58.15441(14)

Ti+1 (4F ) [Ar] 3d2 4s1
3-zeta -57.93926(11) -57.93959(12)

4-zeta -57.93897(14) -57.93952(11)

Ti+2 (3F ) [Ar] 3d2 3-zeta -57.43940(10) -57.43973(12)

4-zeta -57.44106(12) -57.44004(10)

Table 8.4: Results for atomic Ti for DMC using PBE-DFT and ROHF single
body orbitals in the Slater-Jastrow trial function. The results given are for time
step τ=0.01. Again, the BFD pseudopotential is used. The electron configura-
tion given makes reference to the Argon configuration with the understanding
that only the Ne core states are accounted for through the pseudopotential.
Comparisons are made for BFD truncated 3- and 4-zeta basis (details are ref-
erenced in the main text).

57



Trial function DMC with time-step τ (Ha)

Transition Theory Basis τ = 0.04 τ = 0.02 τ = 0.01

σ-excitation PBE 3-zeta 0.02461(23) 0.02541(21) 0.02563(19)

PBE 4-zeta 0.02808(25) 0.02800(18) 0.02828(20)

Ti (3F ) → Ti (5F ) ROHF 3-zeta 0.02871(22) 0.02896(17) 0.02936(17)

ROHF 4-zeta 0.02809(24) 0.02788(20) 0.02832(16)

1st Ionization Potential PBE 3-zeta 0.23955(24) 0.24106(20) 0.24146(18)

PBE 4-zeta 0.24214(22) 0.24279(18) 0.24317(18)

Ti (3F ) → Ti+1 (4F ) ROHF 3-zeta 0.24175(22) 0.24241(17) 0.24290(16)

ROHF 4-zeta 0.24112(24) 0.24170(19) 0.24217(18)

2nd Ionization Potential PBE 3-zeta 0.50122(17) 0.49996(17) 0.49986(17)

PBE 4-zeta 0.50066(19) 0.49964(16) 0.49948(15)

Ti+1 (4F ) → Ti+2 (3F ) ROHF 3-zeta 0.50156(17) 0.50028(16) 0.49986(15)

ROHF 4-zeta 0.49896(17) 0.49824(16) 0.49791(18)

Table 8.5: DMC time-step convergence data for transition energies of atomic
Ti. The DMC Slater-Jastrow trial function uses single-body orbitals from PBE-
DFT and ROHF with 3- and 4-zeta BFD basis sets that have been truncated
to include orbitals no higher than d.

Transition Basis DMC w/ROHF DMC w/PBE Experiment

σ-excitation 3-zeta 0.02936(17) 0.02563(19) 0.030 Ha

Ti (3F ) → Ti (5F ) 4-zeta 0.02832(16) 0.02828(20)

1st Ionization Potential 3-zeta 0.24290(16) 0.24146(18) 0.251

Ti (3F ) → Ti+1 (4F ) 4-zeta 0.24217(18) 0.24317(18)

2nd Ionization Potential 3-zeta 0.49986(15) 0.49986(17) 0.4991

Ti+1 (4F ) → Ti+2 (3F ) 4-zeta 0.49791(18) 0.49948(15)

Table 8.6: DMC time-step converged results for transition energies of atomic
Ti. The DMC Slater-Jastrow trial function uses single-body orbitals from PBE-
DFT and ROHF with truncated 3- and 4-zeta BFD basis sets respectively.
Similar results are found for both ROHF and PBE trial functions and basis set
dependence is small.
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Chapter 9

Titanium Dihydride

9.1 Motivation for TiH2

Titanium dihydride is a simple molecule with bent structure like water that can

serve as a key component of potential hydrogen storage systems.[16] It turns

out that the d−states of transition-metal atoms such as titanium are conducive

to forming bonds with H2 molecules. In fact, depending on the system, each Ti

atom can bond to several intact hydrogen molecules to form what is sometimes

referred to as a Kubas complex as discussed briefly in Sec. 1.2. TiH2 represents

one of the simplest systems we can study to gain insight into the d-states that

give these effects. The structure and energetics of TiH2 are studied here in some

detail because it is an important building block in the hydrogen on Ti-ethylene

systems that are the true focus of this thesis research.

It is important to treat systems such as TiH2 since the d− states in transition

metals are strongly correlated and present inherent challenges to methods that

do not address this issue directly. The QMC methods used here are especially

appropriate since many-body correlation effects are implicitly built into the

correlated trial functions that are optimized in the VMC calculations and used

to project out the ground state in DMC. While the QMC methods used here

have already demonstrated good results on atomic titanium, there are important

differences in molecular systems. The present study of TiH2 is designed to test

the accuracy of our QMC methods for a small molecule directly comparable to

the Ti-ethylene systems. There are two aspects of the problem that differ from

the atom. One is the nature of the wave functions and the lower symmetry

due to the hydrogen bonds. Here we quantify the accuracy of the nodal-surface

derived from PBE-DFT single-body orbitals for this molecular system. The

second aspect is that the geometry of the molecule will in general be different

from that found in the density functional calculations. Thus we carry out a

full minimization of the energy to find the optimal geometry within the DMC

theory. This is not usually done in QMC calculations, and it is one of the most

difficult parts of the work in this thesis.[44] The reason is that different symmetry

states of the d-orbitals are very close in energy, and it requires extreme care to

determine the energy surfaces as a function of bond lengths and angle for each

symmetry. Such complete studies are not feasible for the larger Ti-ethylene-
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hydrogen systems presented later. This study will quantify the accuracy of the

energy for the geometries found in the density functional calculations.

The work starts with PBE-DFT and Hartree-Fock (HF) studies of the poten-

tial energy surfaces of TiH2 for the C2v symmetry states. Using the single-body

theory results, trial wave functions are constructed with the aid of a VMC opti-

mized Jastrow factor. Next, DMC potential energy surfaces are constructed on

configuration space grids so that optimal geometric structures can be computed

within DMC and consistent with the trial functions we use. This is done by

fitting a quadratic surface and sampling to estimate error bars. Finally, com-

parison is made between the differences arising from using single-body orbitals

from PBE-DFT versus HF so that the error due to PBE-DFT geometry in DMC

can be calculated. These results are then used as the basis for the final study

of this research which will be presented in the next chapter.

9.2 Background

9.2.1 Experimental studies

Generally speaking, there are many experimental studies of solid-state transi-

tion metal (TM) hydrides due to their possible application to hydrogen storage.

However, the focus here is specifically the ground and possibly low lying states

of molecular TiH2 which corresponds to a low temperature gas phase. Not

too much experimental work has been done on this system and to the author’s

knowledge only experiments on molecular TiH2 were done by Xiao, Hauge and

Margrave in 1991 and Chertihin and Andrews in 1994.[92, 93] Xiao and cowork-

ers measured both symmetric and antisymmetric stretching frequencies and in-

tensities using a multi-surface matrix isolation spectroscopy technique. They

vaporized titanium by heating a filament to 1380 - 1460◦C reacting with molec-

ular hydrogen/deuterium. Subsequently the reaction products were deposited

on an inert matrix and the spectra was measured with the surface temperature

of 12K. From a symmetry analysis of the modes the molecule was found to be

bent. The bond angle was estimated from the intensity data and was found

to be 145◦. In an effort to explore possible further TiHn chemistry, Chertihin

and Andrews studied reactions of pulsed laser evaporated Ti atoms. That work

served to confirm the previous work by Xiao, however, observation of additional

hydride species is emphasized.

9.2.2 Previous theoretical work

Considerably more theoretical work has been done using a variety of methods.

The earliest results we know of are due to Demuynck and Schaefer [94] which

were published in 1980, several years before the experimental studies. Using

Hartree-Fock they studied the 3A1 state and found the molecular structure

to be linear. Further, they find the potential energy curve to be extremely
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flat, varying less than 1.5 mHa from 140-179◦, and with bond length 1.879Å.

With such a flat potential energy curve they suggested that the molecule may

appear bent in matrix experiments due to a dipole-induced dipole interaction.

A single point CI calculation was also done and found to result in an energy

lowering of ∼0.23 Ha. It should be noted that their CI study was limited

due to computational constraints. Shortly thereafter two additional studies by

Tyrrell and Youakim in 1980 and ‘81 were conducted.[95, 96] They compared

calculations using Hartree-Fock all-electron and an Argon effective core potential

(ECP) for the 3B1 symmetry and a lone ECP calculation for 3A1. They found

considerably different potential energy curves from Demuynck and Schaefer,

and significant differences between all electron and ECP calculations. In the

all electron calculation, they found a bond angle of about 90◦ and 1.556 Bohr

with depth of 50 mHa. The ECP calculation gave 150◦ and 1.704 Bohr with a

well depth of 3 mHa. The followup work in 1981 studied basis effects in ECP

calculations on the 3A1 state that suggested a more complete basis is necessary.

They found that the presence of these functions resulted in an increased bonding

angle. As discussed in chapter 8, this work uses a neon core pseudopotential

which avoids some of the problems associated with the larger argon core.

Subsequent to the experimental work additional studies were conducted. In

1995 Kudo and Gordon [97] conducted a dedicated study of TiH2 using all-

electron State Averaged Complete Active Space Self Consistent Field Theory

(SA-CASSCF) and Multi-Reference Configuration Interaction (MRCI) theory.

They found that 3B1 state to be lower in energy than the 3A1 by only 0.6 mHa.

The geometry of these two structures was also found to be similar where the
3B1 bond was 140.7◦ and 3.521 Bohr while 3A1 had a bond of 150.6◦ and 3.555

Bohr. The well depth of the 3B1 state was found to be quite shallow at 1.3 mHa.

Subsequently in 1996, Fujii and Iwata conducted a study in which TiH2 was a

part.[98] This work seems a bit less careful than the previous work by Kudo.

They found all the structures they studied to be linear or essentially linear. In

particular, TiH2 was found to be essentially linear with a well depth of less than

0.1 mHa.

Among the most careful work is that conducted by Ma, Collins and Schaefer

[99]. They conducted all-electron Configuration Interaction Singles-Doubles and

Coupled-Cluster Singles-Doubles calculations on several states of TiH2 (and

VH2 as well). They find 3B1 to be the lowest energy state with 3A1 about 0.2

mHa above it. The geometries of these states are given by CISD theory and

are 143.2◦ at 3.402 Bohr and 144.6◦ at 3.405 Bohr respectively (these numbers

are with respect to the TZP+f basis). The well depth found is about 2 mHa.

Finally, there is an all-electron DFT study by Platts in 2001.[100] That work

uses the B3LYP functional and finds 3A1 to be the ground state with bond

124.6◦ at 3.328 Bohr.1 We regard the CI calculations[99] as the best previous

1This is in reasonable agreement with early B3LYP test calculations I did but that are not
presented as a part of my results here.
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work and will use them to compare with the QMC results presented here.

9.3 Nature of the electronic states of TiH2

The focus of this present chapter is the spin 1 state of TiH2 with C2v geometric

symmetry. Here, the hydrogen atoms are bound to the 4s− and 3d−states of

Ti through σ−bonds (see Figures 9.3a,b). This results in two unpaired elec-

tronic d−states so that the molecule is spin 1 in accordance with Hund’s rule

of maximum multiplicity. Later in Section 9.7 detailed results from PBE-DFT

study of the spin 0 and spin 2 states are presented that substantiate the spin 1

system as energetically most favorable. Presently I will discuss TiH2 symmetry,

the Ti−H, bonding, and d−state structure with regard to both bonding and

symmetry.

9.3.1 Symmetry of TiH2

Figure 9.1: The above figure indicates the C2v symmetry operations and their
relationship to TiH2. The C2 axis indicates a two-fold rotational symmetry, the
σv and σ′

v planes indicate planes of mirror symmetry.

The TiH2 molecule electronic density is invariant under the C2v point group

symmetry operations as indicated in Figure 9.1. Here we see that TiH2 has

two-fold rotational symmetry about the C2 axis and mirror symmetry about

the σv and σ′
v planes. Thus, with the identity operation, there are four possible

symmetry operations that belong to the C2v point group. While the electron

density of the molecule is invariant under these operations, the wave function can

change by a phase factor which, for real wave functions, corresponds to a change

in sign. This is because the density is given by |Ψ|2 where Ψ is the wave function.

Therefore, given a symmetry operator Ô ∈ {E, σv, σ
′
v, C2} we have ÔΨ = ±Ψ so

that Ψ is an eigenstate of Ô. Further, since the symmetry operators necessarily

commute with the Hamiltonian (i.e. ÔĤ = ĤÔ where Ĥ is the Hamiltonian),

the eigenstates of the Hamiltonian are simultaneous eigenstates of the symmetry

operators making the symmetry of the wave function a “good” quantum number.

Given this symmetry, the sign relationship of the various states can be un-

derstood as shown in Tab. 9.1. The A−states (A1, A2) are symmetric under
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A1 B1 A2 B2

H−Ti−H
+ + + + + − + −
+ + − − − + + −

Table 9.1: Wave function symmetries for the C2v point group. The TiH2

at left indicates the molecular orientations with respect to the states and the
vertical and horizontal lines in the sign tables indicate the σv and σ′

v mirror
symmetry planes respectively with the point of intersection corresponding to
the C2 rotation symmetry axis. The A−states (A1, A2) are symmetric under
rotation about the C2 axis while the B−states are antisymmetric. The 1−states
(A1, B1) are symmetric under mirroring about the σv plane while the 2−states
are antisymmetric.

rotation about the C2 axis while the B−states are antisymmetric. The 1−states

(A1, B1) are symmetric under mirroring about the σv plane while the 2−states

are antisymmetric.

A1 B1 A2 B2

A1 A1 B1 A2 B2

B1 B1 A1 B2 A2

A2 A2 B2 A1 B1

B2 B2 A2 B1 A1

Table 9.2: C2v symmetry multiplication table.

As will be seen, atomic-like d−states play an important role in TiH2. Thus

it is important to understand the d−states in terms of the above mentioned

symmetries. The atomic d−states are actually spherical harmonics which are

complex; however, by considering linear combinations of the spherical harmon-

ics they can be transformed into real counterparts. Using the wave function

sign symmetries outlined in Tab. 9.1, the symmetry of the d−states can be

straightforwardly assigned as shown in Fig. 9.2. Given these results we are

prepared to understand the details of TiH2

Figure 9.2: Real spherical harmonics for d-states. For reference, the TiH2

molecule is aligned on the yz-plane with its C2 axis aligned to the z-axis. The
conventional m value for the real functions are: (a) m = 0 (b) m = 1 (c) m = −1
(d) m = 2 (e) m = −2.
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9.3.2 Bonding and d−states in TiH2

It will prove somewhat insightful to study some of the detailed results from

a qualitative point of view so that the physics of the TiH2 problem can be

better understood. Consider the bonding states of the TiH2 ground-state in

PBE-DFT theory which is found to be bent. The upper occupied single-body

orbitals can be seen in Fig. 9.3. In Fig. 9.3a we see an atomic Ti 4s−state

hybridized (by way of pinched orbital node) into a σ−bond state which, due

to electron spin pairing, accounts for one electron in each of the Ti−H bonds.

The other two σ−bond electrons come from a hybridized Ti 3d−state through

exaggeration/suppression of the orbital lobes. The states are spin paired with

A2 and B2 symmetry respectively and so cannot affect the wave function sign

under symmetry transformations. These bond states are lower in energy than

the unpaired d−states by about 2-3 mHa.

Concerning the energy spacing of the single-body states in PBE-DFT, the

single-body σ−bond states are lower in energy than the two unpaired 3d states

by about 2 - 3 mHa. The two unpaired d−states are less than 0.4 mHa apart

and the homo-lumo d−state energy gap is 0.15 - 1.5 mHa. The d−state de-

generacy is broken due to a lack of spherical symmetry. Still, upon inspection,

the unpaired d-states look fairly atomic like with some noticeable distortion due

to the bonding (in some cases). The two d−states are occupied from the four

remaining d−states that are not involved in the bonding so that as many as 6

occupations are possible (this is born out in UHF calculations and will be dis-

cussed later in Sec. 9.7). Consequently, it is expected that there are low lying

excited states but the precise ground state symmetry is not entirely obvious.

9.3.3 d−state occupation in TiH2

Earlier in this section it was mentioned that 6 d−state occupations were fa-

vorable given the 4 d−states that are not involved in the bonding. First it

should be noted how the atomic d−states, which are the spherical harmonics,

are understood in terms of C2v symmetry. The spherical harmonics are com-

plex; however, by considering linear combinations, they can be transformed into

real counterparts. The relationship between symmetry states of C2v and atomic

d−states can be seen in Fig. 9.2. Upon inspection it is clear that σ−bond state

shown in Fig. 9.3b has symmetry B2. Using the remaining 4 possible d-states, 2

of which can be occupied, allows for the 6 favorable d−state occupations listed

in Tab. 9.3 to be determined. In Sec. 9.7 more will be said in regard to these

occupations.

9.3.4 Approaching linear TiH2

A final but important point needs to be made in regard to TiH2 as the molecular

structure approaches linear. Linear TiH2 has D∞h point group symmetry where
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(a) HOMO spin paired A1 σ−bond (b) HOMO spin paired B2 σ−bond

(c) HOMO spin unpaired B1 d−state (d) HOMO spin unpaired A1 d−state

Figure 9.3: Four highest HOMO states of TiH2 in energy order. Blue and
red contrast positive and negative regions respectively. Specifically, these are
slices of the molecular orbitals where the molecular plane is identical to the
slice plane in Figures (a) and (b). These single-body molecular orbitals were
derived from the ground-state PBE-DFT calculations with a 4-zeta basis and
BFD pseudopotential for Ti. (a) Top-left. Shows a Ti 4s−state hybridized into
a σ−bond state where the 4s−orbital node is pinched. The state is spin paired
with A1 symmetry. (b) Top-right. Shows a Ti 3d−state, normally associated
with m = ±1 with respect to the linear molecule axis (if the bond were opened
up to 180◦), hybridized into the other σ−bond state through exaggeration/sup-
pression of the Ti d−orbital lobes. The state is spin paired with B2 symmetry.
(c) Bottom-left. Is an unpaired molecular orbital with B1 symmetry and similar
to an atomic 3d−state of Ti with m = ±2 relative to the linear molecule axis.
(d) Bottom-right. Is the other unpaired molecular orbital but with A1 symmetry
and similar to an atomic 3d−state of Ti with m = 0 relative to the linear

molecule axis (if the bond were opened up to 180◦).
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(a) LUMO A1 d−state (b) LUMO A2 d−state

(c) LUMO σ∗−bond B2 state

Figure 9.4: Three lowest LUMO states of TiH2 in energy order. Blue and red
contrast positive and negative regions respectively. Specifically, these are slices
of the molecular orbitals where TiH2 is oriented identical to Fig. 9.3. The states
are derived from the same calculations as in Fig. 9.3 as well. (a) Top-left. Shows
an unoccupied molecular orbital with A1 symmetry and similar to an atomic
3d−state of Ti with m = ±2 relative to the linear molecule axis. (b) Top-
right. Shows an unoccupied molecular orbital with A2 symmetry and similar
to an atomic 3d−state of Ti with m = ±1 relative to the linear molecule axis.
(c) Bottom. This state is significant in that it shows an atomic-like d−state
hybridized into an anti-bonding σ∗−state with B2 symmetry.
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Wave Function Orbital Number
Symmetry Symmetry States

A1 A1, A1 1

A2 A1, A2 2

B1 A1, B1 2

B2 A2, B1 1

Table 9.3: Favorable d-state occupations for TiH2. Give five d-states there are
10 possible occupations of two of those states. However, because the d-state
with B2 symmetry participates in the bonding of the hydrogen atoms, only four
states remain to occupy the unpaired states. This allows for the 6 possible
favorable occupations listed.

C∞ axis is orthogonal to the C2 axis of bent TiH2. Upon considering the

transformation of d−states under D∞h symmetry it becomes clear that the

electronic states of the linear molecule should be degenerate and correspond to

the 3∆g symmetry in D∞h.

Generally speaking, it is not hard to see how the d−state occupations de-

scribed above can become degenerate as the TiH2 bond angle approaches 180◦.

First, consider the transformations of the individual d−states under various

symmetry operations. In doing this I will refer to the m−value of the d−state

where the z−axis is aligned to the linear (C∞) axis as opposed to the C2 axis of

the usual bent molecule. The usual convention for describing the m−value will

be used so that the real part of the spherical harmonic is considered +m and the

imaginary part −m. The A1 m = 0 state is invariant under rotation about the

C∞ axis. The A1 m = 2 state becomes B1 m = −2 under 45◦ rotation about the

C∞ axis. Finally, the A2 m = 1 states becomes B2 m = −1 under 90◦ rotation

about the C∞ axis. These relationships are summarized in Tab. 9.4. With

these relationships in place it becomes straightforward to see the degeneracy

relationships when two unpaired d−states are occupied. In short, state A1 and

B1 can become degenerate and states A2 and B2 can become degenerate as the

TiH2 molecule approaches linear geometry. The detailed results of this analysis

are presented in Tab. 9.5. These degeneracies are apparent in the results that

will be present later and verify the d−state behavior in the limit of linear struc-

ture. Finally, it should be noted that higher excitations can involve other kinds

of unpaired orbitals (e.g. 4p−states) but the arguments are the same.

9.4 Single-Body Methods used for TiH2

This work employ the DMC method to project out the fixed-node ground state

energy for several states and geometries of the TiH2 system to determine the

optimal DMC geometry with respect to symmetry. The form of the trial func-

tions used here are the Slater-Jastrow form where the Slater determinant is
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d−state transformation Rotation
under rotation about C∞ angle

A1 (m = 0) Invariant

A1 (m = 2) ↔ B1 (m = −2) 45◦

A2 (m = 1) ↔ B2 (m = −1) 90◦

Table 9.4: This table presents how single d−states with C2v symmetry trans-
form under rotations about the limiting linear TiH2 molecular axis (C∞ axis for
D∞h symmetry). The A1, B1, A2, B2 states are the usual C2v states of bent
TiH2, however, the m−values are those where the z−axis is aligned to the C∞
axis of the linear molecule.

Overall wave d−states transformation Rotation
function symmetry under rotation about C∞ angle

B1
A1, B1 ( 2,−2)

Invariant
A2, B2 ( 1,−1)

A1 ↔ B1 A1, A1 ( 0, 2) ↔ A1, B1 ( 0,−2) 45◦

A1, A2 ( 0, 1) ↔ A1, B2 ( 0,−1)

A2 ↔ B2 A1, A2 ( 2, 1) ↔ A1, B2 ( 2,−1) 90◦

B1, B2 (−2,−1) ↔ B1, A2 (−2, 1)

Table 9.5: This table presents how two d−states with C2v symmetry transform
under rotations about the limiting linear TiH2 molecular axis (C∞ axis for D∞h

symmetry). The A1, B1, A2, B2 states are the usual C2v states of bent TiH2,
however, the m−values are those where the z−axis is aligned to the C∞ axis of
the linear molecule. The overall wave function symmetry can be seen to be the
product of the symmetries of the two unpaired d−states (see Table 9.2 above).
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constructed of single-body orbitals from either PBE-DFT or Hartree-Fock the-

ory. Thus, before the QMC calculations can be done a number of single-body

calculations must be conducted. By comparing DMC results from PBE-DFT

and HF it can be established how sensitive the results are to the single-body

theory used for the trial function. This is done in two ways. First, by comparing

DMC potential energy curves and optimal DMC geometry. Second, because it is

desirable to use the optimal geometry that comes out of the single-body theory

we can establish what the error in DMC due to geometry is. All of this entails

a fair number of single-body calculations.

The focus of the work is the triplet states of TiH2. Prior to focussing on

these states, calculations were done on the singlet and quintuplet states to show

that the triplet state is indeed lowest. This was done in PBE-DFT theory only.

However, no further QMC testing of these states is done since a previous study

has already shown this to be the case.[97]

The triplet state calculations done here can easily result in several symmetry

states for each geometry. Yet, each DFT/HF calculation gives but one result

when and if convergence is achieved. Thus, conducting a single DFT/HF cal-

culation at each geometry is insufficient to determine the ground state or low

lying excited state ordering of the system for a given theory with confidence.

By conducting many calculations, each with different initial conditions, several

stationary states can generally be found. Combining multiple initial conditions

with multiple geometries results in patterns that make the potential energy sur-

face for several symmetries apparent. The Gaussian09[101] code was used to

find the single-body orbitals that are used later in my QMC calculations. The

code allows for several possible methods for constructing an initial guess. I use

the orbitals that result from diagonalizing the Harris functional.[102] It is then

possible to provide user-defined initial guess orbital occupations to be used in

the main calculation. By supplying a variety of trial occupations I am able to

find several eigenstates and generate the surfaces presented later in Sec. 9.7.

It should be noted that the symmetry of the trial occupation may differ from

the final state for which the calculation becomes self-consistent so all the final

states were rechecked. This method produces not only ground state results for

each symmetry, but also excited states.

It is recognized that DFT is a ground state theory and only the ground

state of the system is considered consistent with the Hohenberg-Kohn postulates

although higher states may be indicative of relevant excitations especially those

close to the ground state. The calculations done here are unrestricted open

shell. It is also recognized that this is a source of spin contamination because

the spatial part of the spin-paired (up and down) orbitals do not exactly match.

However, the amount of spin contamination of the single body calculations was

found to be very small. Since we are mainly concerned with the potential energy

surface of TiH2 where spin and symmetry are constant, it is expected that this

error will be somewhat uniform and not effect results in a significant way.
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9.5 DMC Geometry Optimization of TiH2

Conducting a DMC optimization of TiH2 is one of the main goals of this present

study. It should be noted in advance that this is not typically done and repre-

sents a challenge in and of itself. The main idea is to conduct DMC calculations

on nine points in configuration space for the symmetries of interest and then fit

a quadratic surface to that data. The nine geometries studied have bond angle

110◦, 135◦ and 160◦ each with bond length 3.0, 3.3 and 3.6 Bohr. See Fig. 9.5

for an illustrative example of the grid and typical surface fit. This results in a

grid that is fairly well placed so that the minimum is not too far from the center.

The symmetries studied are 3B1,
3A1,

3A2. The focus is really on the 3B1 and
3A1 states, the 3A2 is run as a check to make sure that there are no unexpected

energy reordering going on. State 3B2 has been specifically neglected because

in both the HF and PBE-DFT it was noted that another state of the same sym-

metry is near by and is probably not well represented by a single-determinant

trial function.

Figure 9.5: Pictured above is an example of a quadratic surface fit to 9 points.
Namely, for each bond angle 110◦, 135◦, 160◦ bond lengths 3.0, 3.3 and 3.6
Bohr bond lengths are studied. This results in a function E(θ, r) satisfying
E(θi, ri) = Ei for i = 1..9 that can be minimized.

While fitting a quadratic surface is in principle straight forward, the energies

that are being fit all have error bars. This results in some ambiguity regarding

what the proper parameterization of the fit curve is. This ambiguity actually

allows for establishing error bars on the optimal geometry and energy. To do

this, the grid energies are each sampled from a normal distribution centered on

the expected energy and with a standard deviation matching the error bars of

the DMC results. This method certainly has limitations in that if the error bars

are too big then almost any quadratic surface will fit with reasonable probability.

However, with sufficiently small error bars, the fit becomes more restricted so

that the likely curves are reasonably similar and all have a minimum near one

another. In this work an error bar of 0.2 mHa is required to accomplish a

reasonable fit. Finally, this allows for establishing optimal geometries where the

bond angles, bond lengths and energies all have appropriate error bars.
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9.6 Calculation Details

The calculations conducted here follow many of the procedures in the previ-

ous studies only with a few details changed. The Burkatzki-Filippi-Dolg (BFD)

norm-conserving non-local pseudopotential [19] with Neon core is used for tita-

nium and the standard Coulomb potential is used for hydrogen. The reduction

in electrons is almost 50% and thus results in approximately a 5 fold reduction

in computer time for all the calculations. The single-body calculations used

quadruple-zeta basis sets for both Ti and H. The basis and the pseudopotential

for Ti were obtained from the website maintained by BFD.[89] The H basis is the

correlation consistent basis due to Dunning[66], aug-cc-pVQZ, which includes

diffuse and polarization functions and was obtained from the Gaussian09 code.

The single-body radial functions are transformed to a B-spline real space grid

for QMC calculations. The standard fixed-node DMC implementation in the

QMCPACK code [53] is used with the only modification being the Casula[18]

variational treatment of the non-local part of the pseudopotential which is de-

scribed in Sec. 4.4. The Jastrows used here are of the cubic B-spline form and

are only used to satisfy the cusp conditions of the hydrogen electron-proton

interaction and the cusp of the electron-electron interaction occurring between

electrons of opposite spins. The Pauli exclusion principle generally keeps elec-

trons of the same spin apart so that no cusp condition needs to be satisfied for

that case. The resulting trial functions thus have a fairly uniform localization

error since the electron-ion Jastrows used are short ranged. Avoiding the VMC

optimization in this case actually serves as a significant advantage since VMC

optimization can result in some variability in both the localization error and

time step error of the final trial wave function DMC projection. A time-step of

0.2 is used throughout these calculations. The main point of these calculations

is not to get an exactly converged result but rather to see what is going on with

a DMC optimization and get results that are reflective of an exact converged

result. So if the optimization error is different by a mHa (which would probably

be an over estimation) that is within reason. We compare formation energies of

the converged results so that this error is quantified in that regard. Individual

calculations are run so that an error bar of 0.1 to 0.2 mHa is obtained for the

purpose of producing a meaningful quadratic fit.

9.7 Results

The figures and tables in this section are designed to be somewhat self ex-

planatory. All the work uses the BFD pseudopotential for Ti and the Coulomb

potential for H. All single body calculations are done with BFD 4-zeta basis for

Ti and the aug-cc-pVQZ basis for H. The work starts by comparing the TiH2

singlet, triplet, and quadruplet in PBE-DFT to verify that indeed the ground

state of the system is found to be triplet (as the literature suggests). Bond
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lengths were optimized for energy at each bond angle. Several initial conditions

were attempted so as to find any states that might be lower in energy. The po-

tential energy curves for the singlet and quintuplet states found are presented

in Figs. 9.6 and 9.7. The optimal energies for each of the four C2v triplet states

is given in Tab. 9.7. Table 9.6 shows the relative energy for the lowest of singlet

and quintuplet state with respect to the triplet state. With this starting point

the work focuses on the triplet states of TiH2.

Relative
Spin Energy (mHa)

2 87.03

0 14.03

1 0.00

Table 9.6: Relative PBE-DFT energy of the lowest state for each spin with
respect to the triplet state.

At this point comparison is made between PBE-DFT and UHF for the TiH2

triplet states. The respective potential energy curves for PBE-DFT and UHF

are given in Figs. 9.8 and 9.10. Again, many initial conditions were used to look

for states. This resulted in the numerous states that are seen in the UHF plot.

Also, the optimal bond length at each bond angle is also given for PBE-DFT

and UHF in Figs. 9.9 and 9.11 respectively. UHF gives a linear molecule for the

ground state. While PBE-DFT gives a bent geometry. Previous experiments

and other researchers have found a bent structure as discussed above. The

optimal PBE-DFT geometries is given in Table 9.7.

wave function d−state Bond Bond DFT-PBE DMC
Symmetry Symmetries Angle Length Energy Energy

3A1 A1 A1 121.5567◦ 3.3116 -59.3833589988 -59.33132(24)

3B1 B1 A1 119.1401◦ 3.3080 -59.3849442432 -59.33144(24)

3A2 A1 A2 121.5200◦ 3.3537 -59.3743525255 -59.32644(26)

3B2 B1 A2 116.4341◦ 3.3586 -59.3717493232

Table 9.7: Optimal geometry and energies for in PBE-DFT and DMC with
PBE-DFT trial functions. The d-state symmetries are those of the unpaired d-
orbitals. It can be seen that these symmetries result in the overall wave function
symmetry using Tab. 9.2. Energies and bond lengths are in atomic units while
the bond angles are in degrees. It should be noted that all of the geometries
are similar, around 120◦ and 3.3 Bohr. The optimal energies of the two lowest
states, 3A1 and 3B1, are less than 1.6 mHa apart.

Next, DMC results are given for trial functions with single-body orbitals

derived from PBE-DFT and UHF. Potential energy curves are given for the
3A1,

3B1 and 3A2 states for PBE-DFT and UHF trial functions in figures 9.12
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Trial wave function Angle Length DMC Energy
Function Symmetry (Deg) (Bohr) (Ha)

3A1 135.2(05)◦ 3.381(4) -59.3326(3)

PBE 3B1 133.5(06)◦ 3.384(4) -59.3324(3)

3A2 138.2(13)◦ 3.449(7) -59.3271(2)

3A1 145.3(10)◦ 3.438(5) -59.3318(2)

UHF 3B1 142.9(09)◦ 3.418(5) -59.3323(2)

3A1 145.2(12)◦ 3.473(6) -59.3282(2)

Table 9.8: Optimal DMC geometry and energies for 3A1,
3B1 and 3A2. See

Sec. 9.5 for a description of the method used to derive this data.

and 9.13 respectively. These results are derived by the quadratic fit method

described above in Sec. 9.5. A summary of the optimal DMC energies and

geometries for each of the states investigated is given in Table 9.8. Comparing

the DMC results in Tables 9.8 and 9.7 it is seen that using the PBE-DFT

geometry for DMC calculations gives an energy that is within approximately

1.5 mHa of the optimal DMC geometry. It was noted that the results here were

not thoroughly converged. The DMC formation energy for TiH2 found here is

-10.04(4) mHa. This compares well to the converged result given in the next

chapter of -12.60(22) mHa. Of note is that PBE-DFT over estimates this energy

as -40.28 mHa while UHF underestimates it at -3.00 mHa.

9.8 Summary and Conclusions

This study presents a comparison of PBE-DFT and UHF derived trial functions

in the DMC paradigm. While the PBE-DFT and UHF theory themselves give

very different results for the TiH2 structure and formation energies, the DMC

results are very similar. Both trial functions give a bent molecule, however,

the UHF trial function produces a geometry that is 10◦ closer to the 145±5◦

experimental number than a PBE-DFT trial function gives. The 3A1 and 3B1

states are almost degenerate, in general agreement with previous work that

found 3B1 to be lowest by only ∼ 0.2 mHa. The difference in DMC energies is

less than 2 mHa for the two trial functions from UHF and PBE-DFT suggesting

that the fixed node error is small and of this order. We conclude that the DMC

calculations provide the accuracy needed for the studies of hydrogen binding on

Ti-ethylene molecules.

As mentioned from the outset, it is difficult to conduct a DMC optimization

on complex molecules with many degrees of freedom. It is desirable, therefore, to

use PBE-DFT optimized geometries for the DMC calculations moving forward.

Here the error in using PBE-DFT geometry was found to be approximately 1.5

mHa. This is acceptable, especially since this is a variational quantity where
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there is always at least a partial cancellation of error. Also, while it might

appear that the DMC with PBE-DFT trial function produced a slightly inferior

geometry, it should be noted that the absolute energies given by the PBE-DFT

trial function were actually lower than the UHF trial function for the two lowest

states. Thus in the next stage of this thesis research PBE-DFT trial functions

will be used exclusively.
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Figure 9.6: PBE-DFT optimal energy results for the TiH2 singlet states with
respect to bond angle. For each bond angle, the optimal energy is given for
the state found. These calculations were done with a BFD Ti 4-zeta basis and
pseudopotential while hydrogen uses a Coulomb potential and aug-cc-pVQZ
basis. The optimal singlet state is found to be 1A1 with geometry 120.226◦ and
3.290 Bohr bond length. The optimal energy is -59.37091 Ha which is found to
be 14.03 mHa higher than the PBE-DFT triplet ground state.
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Figure 9.7: PBE-DFT optimal energy results for the TiH2 quintuplet states
with respect to bond angle. For each bond angle, the optimal energy is given
for the state found. These calculations were done with a BFD Ti 4-zeta basis
and pseudopotential while hydrogen uses a Coulomb potential and aug-cc-pVQZ
basis. The optimal quintuplet state is found to have a linear geometry with bond
length of 3.534 Bohr. The optimal energy is -59.29791 Ha which is found to be
87.03 mHa higher than the PBE-DFT triplet ground state.
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Figure 9.8: PBE-DFT optimal energy results for the TiH2 triplet states with
respect to bond angle. For each bond angle, the optimal energy is given for the
state found. The optimal bond length for each state and angle can be found
in Fig. 9.9. These calculations were done with a BFD Ti 4-zeta basis and
pseudopotential while hydrogen uses a Coulomb potential and aug-cc-pVQZ
basis. The optimal triplet state is found to be 3B1 with geometry 119.1401◦

and 3.3080 Bohr bond length. The optimal energy is -59.38494 and is ground
state.
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Figure 9.9: PBE-DFT optimal bond length results for the TiH2 triplet states
with respect to bond angle. For each bond angle, the optimal bond length is
given for the state found. The associated optimal energy for each state and
angle can be found in Fig. 9.8. These calculations were done with a BFD Ti
4-zeta basis and pseudopotential while hydrogen uses a Coulomb potential and
aug-cc-pVQZ basis.

100 110 120 130 140 150 160 170
HDegL

-58.85

-58.80

-58.75

-58.70
HHaL

UHF: Energy vs. Bond Angle

B2

A2

B1

A1

Figure 9.10: UHF optimal energy results for the TiH2 triplet states with respect
to bond angle. For each bond angle, the optimal energy is given for the state
found. The optimal bond length for each state and angle can be found in Fig.
9.11. These calculations were done with a BFD Ti 4-zeta basis and pseudopo-
tential while hydrogen uses a Coulomb potential and aug-cc-pVQZ basis. The
optimal UHF triplet state is found to be linear.
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Figure 9.11: UHF optimal bond length results for the TiH2 triplet states with
respect to bond angle. For each bond angle, the optimal bond length is given
for the state found. The associated optimal energy for each state and angle can
be found in Fig. 9.10. These calculations were done with a BFD Ti 4-zeta basis
and pseudopotential while hydrogen uses a Coulomb potential and aug-cc-pVQZ
basis.
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Figure 9.12: DMC results for Slater-Jastrow trial function with PBE-DFT
single-body orbitals. The curves are the result of a quadratic surface fit for
nine points on a configuration space grid as described in Sec. 9.5. The thick-
ness of the plot lines are indicative of the error bars. All calculations employed
the BFD Ti pseudopotential and H Coulomb potential. The basis sets used
in PBE-DFT were the BFD 4-zeta basis for Ti and the aug-cc-pVQZ basis for
hydrogen. Radial functions were transformed to a B-spline grid for the QMC
calculations. Optimal energy and geometry for the 3A1 state is -59.3326(3)
Ha with bond 135.2(5)◦ and 3.381(4) Bohr while the optimal 3B1 structure is
-59.3324(3) Ha with bond 133.5(6)◦ and 3.384(4) Bohr. While the lowest state
is found to be 3A1, the energies are within the error bars.

77



110 120 130 140 150 160
HDegL

-59.332

-59.330

-59.328

-59.326

-59.324

-59.322
HHaL

DMC with UHF trial function:

Energy vs. Bond Angle HFitL

A2

B1

A1

Figure 9.13: DMC results for Slater-Jastrow trial function with UHF single-
body orbitals. The curves are the result of a quadratic surface fit for nine
points on a configuration space grid as described in Sec. 9.5. The thickness
of the plot lines are indicative of the error bars. All calculations employed the
BFD Ti pseudopotential and H Coulomb potential. The basis sets used in UHF
were the BFD 4-zeta basis for Ti and the aug-cc-pVQZ basis for hydrogen.
Radial functions were transformed to a B-spline grid for the QMC calculations.
Optimal energy and geometry for the 3A1 state is -59.3318(2) Ha with bond
145.3(1.0)◦ and 3.438(5) Bohr while the optimal 3B1 structure is -59.3323(2)
Ha with bond 142.9(9)◦ and 3.418(5) Bohr. While the lowest state is found to
be 3B1, error bars are almost touching.
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Chapter 10

Hydrogen on
Titanium-Ethylene

As mentioned in the introduction, there is great interest in systems that exhibit

reversible hydrogen storage (HS) properties that can result in practical appli-

cations for energy storage and transportation. However, many of the proposed

systems, while promising, can be challenging to model so that insight might be

more easily gained since they involve a larger number of atoms such as with

metal-organic-framework (MOF) and fullerene systems. From the outset of this

thesis research the idea of a hydrogen complex on a Ti-ethylene sorbent as de-

scribed by Durgun et al. [16] has seemed to be an elegant system that captures

physics and chemistry that can result in energetics suitable for reversible hy-

drogen adsorption. In particular, the small ethylene system allows for titanium

to bond in a way similar to Ti on a C60 fullerene (see Fig. 10.1). The reduced

system makes study of HS considerably less expensive while still allowing for

relevant results. As it turns out, this area of research is currently very active and

the clear pictures and results presented by Durgun et al. has proven to influence

over 75 papers including some experiments. In fact, a paper published just this

August 2010 [103] is very complementary to the results presented below.

Figure 10.1: This figure is replicated from the Durgun et al., 2006. The atoms
are color coded such that blue, cyan, red indicate atoms Ti, C, H respectively.
(a) Shows Ti-C60 with a hydrogen about the Ti atom. (b) Shows the local
Ti-C60 structure. (c) Shows the analogous TiH2C2H4·3H2.
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10.1 Background

10.1.1 Experimental Work

While a number of reaction dynamics studies have been performed on transition-

metal (TM) ethylene structures,[104] only recently has hydrogen binding on

Ti-ethylene been studied experimentally. Recently, there have been a couple

experiments specifically testing hydrogen adsorption on Ti-ethylene that were

conducted by Phillips and Shivaram.[105, 106] In 2008 they published results

demonstrating 12% uptake of H2 by weight in near vacuum conditions. They

laser ablated Ti in ethylene gas and used a surface accoustic method to measure

the mass of molecules. By comparing uptake of H2 and D2 (two deuteriums)

they were able to confirm their results. Interestingly, they found no clustering

of Ti down to the 5 nm scale. It should be noted that they also conducted a

transmission electron microscope analysis of Ti clustering and found none down

to 5 nm. However, in a subsequent study published in 2009 they showed that

hydrogen uptake was reduced as the pressure increased. In fact, they found

that pressures exceding 0.13 atm resulted in degraded uptake and increased

clustering.

10.1.2 Theoretical Work

The idea of modeling Ti-fullerene hydrogen adsorption using Ti-ethylene is not

too far removed from earlier work regarding titanium decorated carbon nan-

otubes (CNT) by Yildirim and Ciraci in 2005.[107] That work used PBE-DFT

and found that a maximum of 4H2 molecules per Ti atom could be added with

energetics favorable to reversible adsorption. Further they found that the bond-

ing mechanism of Ti to the CNT was very similar to the Dewar mechanism that

will be discussed shortly in Sec. 10.2. Further related work has pursued studies

of transition-metals on benzene and organic materials. The work by Durgun

et al. primarily studies hydrogen complexes on 2 Ti atoms per ethylene. This

model is capable of binding up to 10 H2 molecules with half on each of the two

Ti atoms. This results in as much as ∼14% hydrogen storage by weight which

exceeds the hydrogen concentration of water. Molecular dynamics simulations

ranging in temperature from 300-800K showed that the storage was reversible.

They also discussed Ti dimerization (clustering), the impact on storage capacity

and possible means to circumvent clustering.

Later in 2007, Zhou et al. (same group as Durgun et al.) conducted further

work on TM-ethylene and related structures.[108] That work included PBE-

DFT plane wave calculations, reaction paths calculated by nudged elastic band

method and molecular dynamics calculations. They studied formation of several

structures under MD conditions including Ti-ethylene and TiH2. They find that

while TiH2 formation has favorable energetics, there is a reaction barrier on

the order of 10 mHa that makes this reaction unfavorable. Further, they find
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complexes of Ti structurally similar to ethanol that bond up to 5 H2 molecules.

Very recently, highly accurate calculations have been carried out on the Ti-

ethylene-hydrogen system by Sun et al.[103] They compare DFT using a variety

of functionals against CCSD(T) with MP2 geometries in determining average

binding energies of TiH2C2H4 ·nH2 where n=1,2,3. Corrections for the complete

basis set limit are also included. Of note is that this work also includes some

calculations involving calcium on TPA (terephthalic acid) because Ca does not

suffer from clustering issues like Ti. They find Ca bonds more weakly to ethylene

than Ti; however, the energy is still within the low end for reversible adsorption.

Of the functionals tested, they find the PBE functional very desirable for the

systems they study. This work will serve as an excellent point of comparison

for our results.

10.2 Bonding Mechanisms

As mentioned in the introduction, the systems studied here were chosen in part

based on a bonding mechanism that results in stored intact H2 on an intact ad-

sorbant structure. The mechanism for this is the σ-bond complex which works

through a donor-acceptor interaction between the occupied and unoccupied or-

bitals of a transition metal and H2 and was first articulated by Kubas.[15] A

similar kind of interaction can also occur between the carbon-carbon bond and

a transition metal as will be discussed shortly. Both interactions are relevant

for hydrogen on Ti-ethylene structures. A schematic diagram of the σ-bond

interaction is shown at right in Fig. 10.2. The σ-bond mechanism can be un-

derstood in terms of the σ orbital of H2 donating to an unoccupied d∗-state of

the TM. At the same time back donation occurs from an occupied d-state to

unoccupied σ∗ orbital of H2. Upon consideration it is clear that the net effect of

this interaction is to spread the charge on the H2 away from the H2 center. This

mechanism always results in side-on bonding and an elongation of the hydrogen

bond. Typical bond lengths for true σ-complex bonds are 0.8-0.9Å. It should be

noted that if this interacion in hydrogen is too strong the bond can be broken

so that a hydride forms.

The π-bond complex that results in a TM binding to a carbon is similar to

the σ-bond interaction. A model to describe the π-bond complex was known

well in advance of the mechanisim occuring between a TM and H2 and was first

described by the Dewar-Chatt-Duncanson model in the early 1950s.[109, 110]

This interaction is shown schematically at left in Fig. 10.2. The main difference

is that rather than σ-orbitals, now π-orbitals are involved in the interaction.

Again, the donor-acceptor model applies so that the occupied π-orbitals donate

to the unoccupied d∗-state of the TM. At the same time back donation occurs

from an occupied d-state to unoccupied π∗ orbital of the carbon bond. This

results in the elongation of the carbon bond.
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Figure 10.2: Schematic diagrams of the donor-acceptor model for σ- and π-
bonding involving transition metals (M). Orbitals with an astrisk (*) indicate
virtual or unoccupied orbitals. These bonding mechanisms work very similarly.
The σ- and π-orbitals donate charge to the unoccupied d∗-orbital of the M
while the occupied d-orbital of the M back-donates charge to unoccupied σ∗-
and π∗-orbitals respectively.

10.3 Methods for Hydrogen on Ti-ethylene

systems

I have performed VMC and DMC calculations on several hydrogen-Ti-ethylene

systems. All of these calculations use a Slater-Jastrow trial function where the

single-body orbitals used in the Slater factor are derived from PBE-DFT calcu-

lations with a Gaussian 3-zeta basis using the Gaussian09.[101] In those calcu-

lations, Burkatzki-Filippi-Dolg (BFD) norm-conserving non-local pseudopoten-

tials are used to replace the [Ne] and [He] core electrons of Ti and C respectively.

The standard Coulomb potential is used for H. The QMC work was done using

the QMCPACK code [53] which transforms the Gaussian radial functions onto a

B-spline grid. This transformation has shown to have neglegible impact on final

results while achieving a significant performance improvement. Finally, energy

differences are converged for time-step error and compared to previous results.

The Jastrow factor used in this study is made up of one- and two-body terms.

A detailed description of this form of trial function can be found in Chapter 5.

The Jastrow allows the cusp conditions for two approaching coulomb potentials

to be treated. This is necerrary because the Gaussian type orbitals used in

the Slater part of the determinant are inherently unable to treat this correctly

within some radius about the charge center. The two-body term addresses the

electron-electron cusp conditions. Enforcing cusp-conditions for approaching

electrons of identical spin is not found to be essential since the anti-symmetric

property of fermions tends to keep them apart. The electron-electron Jastrow

allows correlations between electrons in the trial wave function that otherwise

would not be included by single-body theory alone. Besides treating the cusps,

the two-body Jastrow includes correlations that result in the electrons being

pushed apart. The one-body Jastrow contains all the electron-ion Jastrow terms.

(It is called one-body because the ions can be considered as part of an external
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potential). In addition to treating the cusps, the one-body terms allow the

spreading out of the electrons due to the two-body term to be compensated for.

The Jastrow form used throughout is that of a uniform cubic B-spline. The

B-spline is partitioned with uniform knot spacings or segments and extends out

to some cutoff value. The 0th, 1st, and 2nd derivitives are continuous and go

to zero at the cutoff. The B-splines used in the Ti-electron, C-electron and

electron-electron use a knot spacing of 0.5 Bohr and have cutoffs of 9, 7 and 8

Bohr respectively. The Jastrow used for the H-electron is somewhat different.

As it is, the single-body orbitals in the Jastrow already have approximate cusp

behavior, but not close to the proton where it is essential for the local-energy

to remain finite. Therefore, a very short range cusp is desirable. However, it is

still necerrary to have longer range behavior so that the trial function remains a

reasonable description of the true ground state. This involves compensating for

the electron-electron Jastrow, addressing limitations of the PBE-DFT theory

and basis set. Therefore a double cusp is used for hydrogen. A short range

Jastrow with a cusp is used with a 0.1 Bohr resolution and a 0.6 Bohr cutoff

while a long range Jastrow with no cusp is used with a 0.5 Bohr resolution and

a 10 Bohr cutoff. The larger cutoff is used for hydrogen because these atoms

are mostly located on the periphery of the molecle and it is undesirable for the

cutoff to occur in a region of high electron-density.

The Jastrow factor is optimized using a new stochastic method that has

been developed recently by McMinis et al.[91] This method is designed to be an

improvement over linear optimization method previously outlined by Toulouse

and Umrigar.[90] The improvement is designed to take advantage of the bounded

character of the variance in QMC calculations. The new method used here

optimizes H2Ψ = EHΨ, which is essentially a vaiance equation, so that better

statistics can be attained in a finite sample.

The procedure used for all the below presented results is straight forward.

Calculations begin with structural optimization in PBE-DFT for several spin

states. All molecular geometries involving Ti have C2v symmetry. The single-

body orbitals from these calculations are then used in the Slater part of the

Slater-Jastrow trial function. The Jastrows are construct as described above

and parameterized so as to take advantage of the symmetry in the system. At

this point VMC optimization is performed with a time step of 0.25. This time

step is not so important but gave an acceptance ratio of around 50%. The

optimization was done over two passes (which was found to be sufficient) and

generally resulted in a reduction in the variance by a factor of 8 or so. At this

point DMC calculations are preformed on the resultant optimized trial function

at several time steps to test for convergence. The time-steps used are 0.04, 0.02,

and 0.01. Acceptence ratios for these time steps was greater than 97, 98 and

99.5% respectively. VMC results are not presented because they generally do

not provide useful information with this level of Slater-Jastrow trial function.

However, the DMC results are presented with convergence data.
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10.4 Results

Below the results of our calculations are presented. The tables have been de-

signed to be somewhat self explanatory, however, hopefully a few additional

comments will eliminate any confusion. Table 10.1 gives PBE-DFT results for

all the systems used in this present study. Note that PBE-DFT incorrectly gets

the quintuplet state lower in energy than the triplet ground state (see Chap. 8

for more information). In addition, the Ti atom calculation used a 3-zeta basis

that was truncated so that basis functions beyond d-states are not included.

Also presented are the two lowest states of TiH2. In PBE-DFT the 3B1 state

is lowest by only 1.6 mHa; however, DMC optimization results and other single

point calculations have shown a smaller energy difference with 3A1 a little lower

in energy (but with error bars overlaping in DMC). These quantities will be

used in calculating reaction energies.

The singlet, triplet and quintuplet states that could be converged in PBE-

DFT have been reported along with the wave function symmetry. It should be

noted that in some cases, particularily TiH2C2H4·2H2 and ·3H2, two structures

were optimized. These are denoted by an [a] or [b] next to the system name.

In every case the singlet state is found to be lowest with the exception of bare

TiC2H4, which is triplet. PBE-DFT ground state energies are again indicated in

bold for each system. See Fig. 10.5 at the end of this chapter for a visualization

of all the systems in Table 10.1.

It is interesting to note that for both systems TiH2C2H4·2H2 and ·3H2 it

is observed that geometry [a] has the lowest energy for the singlet state which

is the ground state while [b] is optimal for the triplet state. This is somewhat

explained by the geometry data which is given in Tab. 10.3. It is seen that the

H-H bond length exceeds or just about exceeds 0.8Åfor all the H2 molecules

adsorbed. This is considered the threshold for true σ-bonding.

In addition, considering the PBE-DFT ground state of each structure, the

bare TiC2H4 has a C-C bond of 1.5187Å(this seemed fairly long but is in agree-

ment with Durgun et at.[16]). Interestingly, up until the 5th H2 is added the

Ti-H bond remains very close to the isolated TiH2 bond length. One final note

regarding the bond length data, the bond length of the C-H remains almost

unchanged ranging from about 1.09-1.10Åso that it varies less than 1%.

Next we answer the question regarding how PBE-DFT compare to QMC.

The DMC results are given it Tab. 10.4. Aside from the Ti atom and the

ground state of TiH2, the same energy ordering is observed. It is seen that the

TiH2
3A1 and 3B1 states are almost on top of one another, but with 3A1 now

slightly lower. A more straight forward comparison of the results can be seen

in Tab. 10.5 describing various reaction energies. The lines with hook-arrows

represent the energy to rotate the side bonded H2 molecules on TiH2C2H4·2H2

and ·3H2. In order to make the raw data in these tables more understandable,

see the level diagrams shown in Figs. 10.3 and 10.4. Considering the ground
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PBE-DFT Optimal States and Energies (Ha)

System [Geometry] Spin 0 Spin 1 Spin 2

H2
1Σ+

g -1.1661616989

Ti 3F -58.1765268969 5
F -58.1812624443

TiH2
3A1 -59.3819434413

TiH2
3
B1 -59.3835338801

C2H4
1
Ag -13.7389314936

TiC2H4
1A1 -71.9586949350 3

B1 -71.9725687035
5A2 -71.9600393349

TiH2C2H4
1
A1 -73.1959118684

3B1 -73.1679785924 5A2 -73.1419070010

TiH2C2H4·2H2
[a] 1

A1 -75.5550965625
3B1 -75.5206684507 5A1 -75.4319833919

TiH2C2H4·2H2
[b] 1A1 -75.5424363623 3B1 -75.5333993226 5B1 -75.4326499044

TiH2C2H4·3H2
[a] 1

A1 -76.7389638398
3B2 -76.7010200213

TiH2C2H4·3H2
[b] 1A1 -76.7212680418 3B2 -76.7142993410

TiC2H4·5H2
1
A1 -77.8913749027

3A2 -77.8841727344

Table 10.1: Summary of PBE-DFT energies for all the systems studied. Ener-
gies in PBE-DFT for ethylene and various complexes of Ti and ethylene with
and without additional hydrogen. Energies are given in Ha and PBE-DFT
ground states are indicated in bold. Comparison is made between the different
spin states with the symmetry of the state noted. The symmetry used was that
found to be lowest for the given spin state. In all cases the molecular symmetry
is that of the C2v point group except for ethylene, Ti and H2. Geometries are
optimized individually for each system and state indicated. Triple zeta basis sets
are used with aug-cc-pVTZ for hydrogen and BFD VTZ-ANO for carbon and
titanium. Pseudopotentials from BFD are used for carbon and titanium while
the standard Coulomb potential is used for hydrogen. Note that PBE-DFT
incorrectly finds the ground state of Ti as 5F.

state transition energies, it seems that PBE-DFT slightly overbinds by about

3.5 mHa. Also, PBE-DFT consistently gives a higher cost for rotating the side

H2 molecules.

The main disagreements between PBE-DFT and the DMC results are in the

level diagrams showing the formation of TiH2C2H4. This is in stark contrast

to the agreement seen in the adsorption results (with a few less extreme excep-

tions). After discussing this with my research advisor Prof. Martin, it seemed

notable that the DFT calculations are much more accurate for the moleculer

systems despite the fact that they are so poor for the atom, even giving the

wrong ground state, This can be understood from the behavior of the transi-

tion metal 3d states in other molecules[111] and solids.[112] In the atom, the

states are classified by angular momentum and open shell atoms obey Hund’s

rule of maximum S, followed by maximum L. The degenerate orbitals with net

angular momentum are not treated well in DFT since the angular momentum

corresponds to a current and in principle should involve a current functional.

However, in a molecule or solid the symmetry is lower and the orbital angu-

lar momentum is “quenched.” For example, in a crystal cubic symmetry the

orbitals split into T and E symmetries that have charge density fixed along di-

rections in the crystal. In this case density functional theory performs very well,

and the net magnetization is accounted for rather well by the spin only with no
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orbital component. The magnitude of the effects is similar in this case and the

same reasoning is expected to carry over to Ti in all the molecules considered

here.

The average formation energy per H2 for binding 2, 3 and 4 H2 molecules on

a TiH2C2H4 adsorbant for PBE-DFT, DMC, and resent CCSD(T) theoretical

studies by Sun et al.[103] is given in Table 10.2. There is good agreement among

the theories except where 4 H2 molecules have been added. Final judjement

on the performance should wait until a more extensive geometry search for

TiC2H4·5H2 has been conducted.

Number of PBE-DFT DMC w/PBE Sun et al.[103]

H2 Adsorbed (mHa) (mHa) (mHa)

2 -13.4306 -10.08(21) -13.2

3 -14.8556 -11.26(12) -13.6

4 -10.2720 -4.04(12)

Table 10.2: Average formation energy per H2 molecule for adsorption on
TiH2C2H4.

10.5 Summary and Conclusions

In conclusion, PBE-DFT is in reasonable agreement with DMC when 2 and 3 H2

molecules are added to TiH2C2H4. However, there is significant disagreement

when the 4th H2 is added. Despite the good agreement, it seems that judg-

ment should be somewhat restrained considering the disagreements in rotating

the side H2 molecules and the treatment of the triplet state for TiC2H4·5H2.

Still, PBE-DFT did quite well. However, a more thorough geometry search for

TiC2H4·5H2 is necessary. The QMC results are in good agreement with the

results of Sun et al. as well.[103] The significant disagreement for the formaiton

of Ti2C2H4 may be attributable to limitations of PBE-DFT theory to treat

the atom. This is especially reasonable considering how poorly PBE treats the

atom. Here again it is seen that great care must be taken when applying the

PBE-DFT method.

The QMC methods used here have proven successful in treating hydrogen

asdorption. While a good deal of work and care is necessary in applying this

method, it can give high accuracy with scaling that can carry over to larger

systems. While the adsorption that occurs in this system happens on energy

scales larger than physisorption, discerning the proper geometry in DMC re-

quires resolving energies below 3.5 mHa in some cases. This is a challenge in

any case but also shows how important testing the theory is.
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Bond Lengths (Å)

System [Geometry] State C−C C−H Ti−C Ti−H Ti-H2 (side/top) H−H (side/top)

H2
1Σ+

g 0.7509

TiH2
3A1 1.7516

TiH2
3B1 1.7498

C2H4
1Ag 1.3298 1.0901

TiC2H4
1A1 1.4790 1.0947 2.0250

TiC2H4
3B1 1.5187 1.0985 2.0249

TiC2H4
5A2 1.3908 1.0919 2.3159

TiH2C2H4
1A1 1.4881 1.0958 2.0274 1.7460

TiH2C2H4
3B1 1.3920 1.0918 2.2997 1.7620

TiH2C2H4
5A2 1.3895 1.0920 2.3143 1.9662

TiH2C2H4·2H2
[a] 1A1 1.4378 1.0942 2.1491 1.7442 1.8994 0.8085

TiH2C2H4·2H2
[b] 1A1 1.4628 1.0912 2.0616 1.7583 2.1680 0.7662

TiH2C2H4·2H2
[a] 3B1 1.3834 1.0908 2.3666 1.7600 2.0426 0.7725

TiH2C2H4·2H2
[b] 3B1 1.3859 1.0933 2.3191 1.7593 1.9316 0.7998

TiH2C2H4·2H2
[a] 5A1 1.3899 1.0909 2.3435 1.8655 1.9562 0.8021

TiH2C2H4·2H2
[b] 5B1 1.3847 1.0956 2.3480 1.8440 1.9834 0.7999

TiH2C2H4·3H2
[a] 1A1 1.4311 1.0913 2.1788 1.7497 1.8841 / 1.8492 0.8167 / 0.8383

TiH2C2H4·3H2
[b] 1A1 1.3797 1.0907 2.3770 1.7651 2.0429 / 1.8755 0.7726 / 0.8403

TiH2C2H4·3H2
[a] 3B1 1.4526 1.0951 2.0875 1.7630 2.1643 / 1.9385 0.7647 / 0.8122

TiH2C2H4·3H2
[b] 3B2 1.3829 1.0911 2.3370 1.7609 1.9395 / 1.9163 0.7989 / 0.8186

TiC2H4·5H2
1A1 1.4398 1.0937 2.1471 1.8338 / 2.2832 0.8557 / 0.7589

TiC2H4·5H2
3A2 1.3741 1.0896 2.4331 1.8388 / 1.9532 0.8530 / 0.8058

Table 10.3: Bond length data. All bond lengths are in angstroms. The
(side/top) notation refers to the [a] and [b] geometries used for TiH2C2H4·2H2

and ·3H2. Images of these structures can be seen at the end of this chapter in
Fig. 10.5.

Figure 10.3: Level diagram of transitions forming TiH2C2H4.
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DMC Energy (Ha) with time step τ

System [Geometry] State τ = 0.04 τ = 0.02 τ = 0.01

H2
1Σ+

g -1.17443(03) -1.17440(03) -1.17443(03)

Ti 3F -58.18286(20) -58.18141(16) -58.18105(14)

Ti 5F -58.15825(12) -58.15600(13) -58.15542(13)

TiH2
3A1 -59.37026(19) -59.36847(16) -59.36812(17)

TiH2
3B1 -59.36996(20) -59.36807(17) -59.36799(16)

C2H4
1Ag -13.74535(15) -13.74418(12) -13.74388(14)

TiC2H4
1A1 -71.92778(27) -71.92563(24) -71.92563(21)

TiC2H4
3B1 -71.93896(29) -71.93668(24) -71.93666(22)

TiC2H4
5A2 -71.92796(23) -71.92744(23) -71.92740(22)

TiH2C2H4
1A1 -73.17146(27) -73.16956(26) -73.17005(20)

TiH2C2H4
3B1 -73.14346(27) -73.14346(24) -73.14329(20)

TiH2C2H4
5A2 -73.10612(27) -73.10564(18) -73.10597(25)

TiH2C2H4·2H2
[a] 1A1 -75.53873(30) -75.53767(24) -75.53907(22)

TiH2C2H4·2H2
[b] 1A1 -75.53736(28) -75.53536(23) -75.53560(27)

TiH2C2H4·2H2
[a] 3B1 -75.51441(29) -75.51297(27) -75.51360(29)

TiH2C2H4·2H2
[b] 3B1 -75.52148(26) -75.51985(28) -75.52057(21)

TiH2C2H4·2H2
[a] 5A1 -75.40417(31) -75.40323(23) -75.40306(21)

TiH2C2H4·3H2
[a] 1A1 -76.72718(29) -76.72654(29) -76.72713(23)

TiH2C2H4·3H2
[b] 1A1 -76.72326(28) -76.72139(26) -76.72046(25)

TiH2C2H4·3H2
[a] 3B1 -76.69749(28) -76.69589(27) -76.69596(25)

TiH2C2H4·3H2
[b] 3B2 -76.70790(32) -76.70657(28) -76.70722(24)

TiC2H4·5H2
1A1 -77.88582(32) -77.88433(25) -77.88394(17)

TiC2H4·5H2
3A2 -77.87279(47) -77.87126(21) -77.87153(25)

Table 10.4: The above table presents DMC convergence data for the various
systems and spin states that are used in this study. The PBE-DFT results for
the same systems can be found in Tab. 10.1. All energies are given in Ha and
the DMC fixed-node ground state energies for our trial functions are indicated
in bold. The symmetry state used is that found to be most favorable in PBE-
DFT with geometry optimization. In all cases the triple zeta basis was used
with aug-cc-pVTZ for hydrogen and BFD VTZ-ANO for carbon and titanium
in the PBE-DFT calculations. The DMC results are for Slater-Jastrow trial
function constructed from the single-body orbitals derived from the PBE-DFT
calculations and Jastrow employing electron-ion and electron-electron terms.
Pseudopotentials from BFD are used for carbon and titanium while the standard
Coulomb potential is used for hydrogen. Convergence is tested at time-steps
τ=0.04, 0.02, 0.01 and found to be converged at between τ=0.2 amd τ=0.1.
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∆E (mHa/H2)

Grond State Reactions PBE DMC

(a) Ti (3F) + H2 (1Σ+
g ) → TiH2 (3A1) -39.2548 -12.60(22)

(b) Ti (3F) + C2H4 (1Ag) → TiC2H4 (3B1) -57.1103 -11.73(30)

(c) TiH2 (3A1) + C2H4 (1Ag) → TiH2C2H4 (1A1) -75.0369 -58.05(30)

(d) TiC2H4 (3B1) + H2 (1Σ+
g ) → TiH2C2H4 (1A1) -57.1815 -58.92(30)

(e) 1
2
TiH2C2H4 (1A1) + H2 (1Σ+

g ) → 1
2
TiH2C2H4·2H2

[a] (1A1) -13.4306 -10.08(21)

→֒ 1
2
TiH2C2H4·2H2

[b] (1A1) 6.3301 1.74(25)

(f) TiH2C2H4·2H2
[a] (1A1) + H2 (1Σ+

g ) → TiH2C2H4·3H2
[a] (1A1) -17.7056 -13.63(32)

→֒ TiH2C2H4·3H2
[b] (1A1) 17.6958 6.67(34)

(g) TiH2C2H4·3H2
[a] (1A1) + H2 (1Σ+

g ) → TiC2H4·5H2 (1A1) 13.7506 17.62(29)

Excited State Triplet Reactions

(h) TiC2H4 (3B1) + H2 (1Σ+
g ) → TiH2C2H4 (3B1) -29.2482 -32.16(30)

(i) 1
2
TiH2C2H4 (3B1) + H2 (1Σ+

g ) → 1
2
TiH2C2H4·2H2

[b] (3B1) -16.5487 -14.17(15)

→֒ 1
2
TiH2C2H4·2H2

[a] (3B1) 6.3654 3.49(25)

(j) TiH2C2H4·2H2
[b] (3B1) + H2 (1Σ+

g ) → TiH2C2H4·3H2
[b] (3B2) -14.7383 -12.18(32)

→֒ TiH2C2H4·3H2
[a] (3B1) 13.2793 11.26(35)

(k) TiH2C2H4·3H2
[b] (3B2) + H2 (1Σ+

g ) → TiC2H4·5H2 (3A2) -3.7117 10.16(35)

Table 10.5: Formation energies in PBE-DFT and DMC for the various reactions
are given in mHa. Negative values indicate the reaction is exothermic. Note
that the hook-arrows represent transition from the above state/geometry to a
new geometry (indicated as [a] or [b]). Calculations are based on results from
Table 10.4. Reactions (a) through (g) are transitions between the various ground
states found in DMC with PBE-DFT optimized geometries. In particular, all
structures are spin 0 except for atomic Ti, TiH2, and TiC2H4 which are spin 1.
It should be noted that reaction (a)+(c) is identical to reaction (b)+(d), only
the reaction path is different. Also, the formation energies given for reactions
(e) and (i) are the average per H2 when two hydrogen molecules are added.
Reactions (h) through (k) are transitions between triplet states.

Figure 10.4: Level diagram of transitions involving adsorption and changes in
geometry.
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(a) C2H4 (b) TiH2 (c) TiC2H4

(d) TiH2C2H4 (e) TiH2C2H4·2H2 [a] (f) TiH2C2H4·2H2 [b]

(g) TiH2C2H4·3H2 [a] (h) TiH2C2H4·3H2 [b] (i) TiC2H4·5H2

Figure 10.5: Above are the molecular structures and complexes studied. The
atoms are colored such that blue, cyan, red correspond to Ti, C and H re-
spectively. Careful distinction is made for the orientation of the side adsorbed
hydrogen atoms in figures (e)-(h). When oriented vertically the geometry is
denoted by an [a] while a horizontal orientation is given by [b].
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Chapter 11

Conclusion

This thesis research has successfully carried out a QMC study of hydrogen ad-

sorption on carbon and transition metal systems in the final study of hydrogen

on Ti-ethylene. The research path required many steps, all of which served a

purpose in qualifying the final results. The first two studies yielded results for

the final adsorption study in a more general sense. The hydrogen study allowed

issues regarding the Jastrow for hydrogen to be specifically understood. Those

results set a template for treating new atoms as they were added to the systems

being studied. It often proved somewhat challenging to decide on the cutoff

for the B-spline Jastrows, however, the final result is that the cutoff should be

as long as possible while still maintaining proper sampling. The next study

allowed for a rigorous test of the methods used throughout in two substantial

ways. First, it compared a relatively simple Slater-Jastrow (SJ) trial function

to a significantly more sophisticated JAGP (Geminal) trial function. It was

established that the SJ can in fact have a sufficiently good nodal surface to

get accurate energy differences for the small binding energies associated with

physisorption. Second, it demonstrated the feasibility of resolving binding en-

ergies under 2 mHa reliably. The hydrogen on benzene work also resulted in a

publication in the Journal of Chemical Physics.

The next two studies presented were each successively more specifically rel-

evant to the to the final adsorption study that was conducted. The atomic

Ti study allowed for the testing of the BFD pseudopotential with the specific

Slater-Jastrow setup used throughout this work. It was found that while PBE-

DFT got the incorrect ground state, when used as a trial function in DMC very

accurate energies could still be obtained. It was also shown that both PBE-DFT

and UHF trial functions performed similarly so that there wasn’t a strong de-

pendence on the single-body theory used. This is essential if the QMC methods

used here are to be reliable. In addition, the work on atomic Ti also gave me

some needed additional experience with treating d-states and actually getting

the Gaussian09 code to converge to states with which I am interested.

The TiH2 study presented here was a tremendous learning experience and

greatly added to the preparation for the final study. This work allowed for

further knowledge to be gained in looking for hard to find states in the single-

body methods. Also, a better understanding of the role d-states play in both
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the symmetry of a molecule and bonding. Constructing DMC potential energy

surfaces by means of quadratic fit and comparing PBE-DFT and UHF trial

functions was a rigorous test of trial function dependence in DMC. While some

trial function dependence was observed, the fixed node error was on the order

of less than 2 mHa in general. The error due to using the PBE-DFT optimal

geometry was also established to be less than 1.5 mHa in DMC. This error

partially cancels so that in practice, if the geometry is in reasonable agreement

with the correct DMC geometry, this error could be lower. In that study UHF

gave a linear molecule as the optimal structure which would have resulted in a

significant error due to geometry. In addition, this work also found the formation

energy of TiH2 to be 12.60(22) mHa which is more likely a lower bound due to

the geometry error correction. The results of this work gave a solid footing with

which to proceed to the final adsorption study.

Finally, at the end of this work an adsorption study was conducted for hy-

drogen on Ti-ethylene. A number of structures were found using PBE-DFT

theory. Applying DMC to the resultant trial functions yielded interesting re-

sults. Those results are summarized in the level diagrams given in Tables 10.3

and 10.4. Among them was fairly good agreement between PBE-DFT and

DMC for the ground state adsorption transition energies. It was noted that

PBE-DFT consistently was about 3.5 mHa higher in those transitions. Addi-

tionally, good agreement was found with very recent coupled cluster results.[103]

However, PBE-DFT had poor agreement with QMC regarding the formation of

TiH2C2H4 and TiH2. After significant consideration it seems that this is the

result of a general failure of DFT to accurately treat atoms with proper angular

momentum states. As explained in the previous chapter, when the symmetry

of the atom is lowered so that its states are “quenched,” DFT treats the state

correctly. The energy difference between the correct treatment of the lower

symmetry and the incorrect treatment of the angular momentum state is likely

the cause of this issue, and in fact the error is of the proper scale. Further study

regarding the adsorption of the 5th H2 will be necessary to determine proper en-

ergetics and make a final conclusion regarding that specific structure. Also, the

general result that it costs less energy to rotate the side-adsorbed hydrogens in

DMC than in PBE-DFT is curious, further study of the 5th adsorbed H2 would

also show if that trend continues as well.

In all, the QMC methods used here have demonstrated great promise as a

scalable alternative to other high level methods such as CCSD(T). However,

great care must be taken at each step to insure that accurate results are ob-

tained. Also, optimization of the trial function is still challenging although

the recent optimization methods by Toulouse and Umrigar in conjunction with

refinements by McMinis et al. have allowed for tremendous improvement in

reliability.[90, 91] Optimizing geometry in DMC is even more difficult; how-

ever, a reasonably accurate PBE-DFT geometry can often be attained so as to

mitigate this issue. Given the ever increasing size of parallel computing plat-
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forms and the success of QMC theory, methods like those used here may become

increasingly commonplace.
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[49] D. R. Hamann, M. Schlüter, and C. Chiang, Phys. Rev. Lett. 43, 1494
(1979).

[50] S. Fahy, X. W. Wang, and S. G. Louie, Phys. Rev. B 42, 3503 (1990).

[51] D. F. B. ten Haaf, H. J. M. van Bemmel, J. M. J. van Leeuwen, W. van
Saarloos, and D. M. Ceperley, Phys. Rev. B 51, 13039 (1995).

[52] Kenneth P. Esler Jr., einspline, Carnegie Institution of Washington,
http://einspline.sourceforge.net.

[53] J. Kim, et al., QMCPACK, Materials Computation Center. Code available
for download at http://code.google.com/p/qmcpack/.

[54] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 106, 162
(1957).

[55] J. R. Schrieffer, Theory of Superconductivity (W. A. Benjamin, Inc., 1964).

[56] L. C. Pauling, The Nature of the Chemical Bond, 3rd ed. (Cornell Uni-
versity Press, 1960).

[57] M. Casula, C. Attaccalite, and S. Sorella, J. Chem. Phys. 121, 7110
(2004).

[58] S. Sorella, M. Casula, and D. Rocca, cond-mat/0702349v1 (2007).

[59] M. Casula and S. Sorella, unpublished.

[60] J. P. Bouchaud, A. Georges, and C. Lhuillier, Journal of Physics (Paris)
49, 553 (1988).

[61] M. Casula, New QMC approaches for the simulation of electronic systems:

a first application to aromatic molecules and transition metal compounds,
PhD thesis, Scuola Internazionale Superiore di Studi Avanzati (SISSA),
Trieste, Italy, 2005.

[62] S. Fournais, M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, and T. Ø.
Sørensen, Comm. Math. Phys. 255, 183 (2005).

96



[63] W. Kolos and L. Wolniewicz, The Journal of Chemical Physics 43, 2429
(1965).

[64] M. J. Frisch et al., Gaussian 03, Revision C.02, Gaussian, Inc., Walling-
ford, CT, 2004.

[65] M. Burkatzki, C. Filippi, and M. Dolg, J. Chem. Phys. 126, 234105
(2007).

[66] R. A. Kendall, J. Thom H. Dunning, and R. J. Harrison, J. Chem. Phys.
96, 6796 (1992).

[67] L. K. Wagner and L. Mitas, J. Chem. Phys. 126, 034105 (2007).

[68] M. R. Hestenes and E. Stiefel, Journal of Research of the National Bureau
of Standards 49, 409 (1952).

[69] S. Sorella, Phys. Rev. B 64, 024512 (2001).

[70] C. J. Umrigar, J. Toulouse, C. Filippi, S. Sorella, and R. G. Hennig, Phys.
Rev. Lett. 98, 110201 (2007).

[71] S. Sorella, et al., TurboRVB, SISSA, http://www.sissa.it.

[72] S. Sorella, Phys. Rev. B 71, 241103 (2005).

[73] C. J. Umrigar and C. Filippi, Phys. Rev. Lett. 94, 150201 (2005).
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