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Electronic origin of the volume collapse in cerium
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4 place Jussieu, 75252, Paris cedex 05, France
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The cerium α-γ phase transition is characterized by means of a many-body Jastrow-correlated wave function,
which minimizes the variational energy of the first-principles scalar-relativistic Hamiltonian, and includes
correlation effects in a nonperturbative way. Our variational ansatz accurately reproduces the structural properties
of the two phases, and proves that even at temperature T = 0 K the system undergoes a first-order transition, with
ab initio parameters which are seamlessly connected to the ones measured by experiment at finite T . We show
that the transition is related to a complex rearrangement of the electronic structure, with a key role played by the
p-f hybridization. The underlying mechanism unveiled by this work can hold in many Ce-bearing compounds,
and more generally in other f -electron systems.
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Understanding the anomalous behavior of cerium, the
prototypical f -electron system, is one of the main chal-
lenges in condensed-matter physics. The 4f electrons are
strongly localized and their on-site Coulomb repulsion is large
compared to bandwidth. Among all lanthanides, cerium is
particularly fascinating, due to the strong hybridization with
the 6s6p5d bands, all present at the Fermi level. The origin
of the cerium volume collapse along the isostructural α-γ
transition has been a puzzle since its discovery in 1927 [1].
A microscopic comprehensive description of the transition is
still lacking, because a direct comparison with the measured
structural properties requires an accuracy below 10 meV. This
challenges any ab initio method, particularly in a regime of
strong correlation. Model calculations have been performed
in the Mott [2], Kondo [3,4], and dynamical mean field
theory (DMFT) [5–9] frameworks, with input parameters
either chosen ad hoc or derived from first-principles density
functional theory (DFT) and constrained random phase ap-
proximation calculations [10]. Fully first-principle electronic
structure schemes, such as DFT [11] or GW [12], grasp some
features of the α and γ phases, but the quantitative agreement
with experiment is generally quite poor.

Experimentally, pure cerium undergoes the α-γ transition
always at finite temperature T . Recently, very accurate x-
ray-diffraction measurements undoubtedly confirmed the first-
order Fm3̄m isostructural character of the transition [13]. The
first-order line extrapolates to zero T at negative pressures.
Nevertheless, the T = 0 K determination of its phase diagram
is extremely important as it can shed light on the underlying
electronic structure mechanism of the transition, and clarify
some critical points still under debate. For instance, some
experiments with cerium alloys seem to find a critical low-T
end point on the α-γ phase boundary [14], where the effect of
alloying is expected to provide a negative chemical pressure
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on the cerium sites. However, it has also been proven that the
end point of the critical line can be tuned down to zero T

by changing the bulk modulus through alloying, thus opening
the way of new low-T scenarios, like superconducting and
non-Fermi-liquid fluctuations [15]. The presence of a low-T
end point is obviously material dependent and it is therefore
possible that cerium allows instead a genuine f -electron driven
0-K quantum phase transition in the negative pressure side of
its phase diagram.

In this Rapid Communication, we present a detailed
analysis of the electronic structure modification across the
volume collapse, studied from first principles, by means of an
explicitly correlated many-body wave function and accurate
0-K quantum Monte Carlo (QMC) techniques. Remarkably,
we have been able to stabilize two distinct coexisting solutions,
α and γ , with the full set of structural parameters across the
transition seamlessly connected to the experimental values
at finite T . We prove that the transition results from a subtle
competition between local Coulomb repulsion and bandwidth,
the latter determined mainly by the a1g and t1u atomic orbitals.
The key role is played by the p-f hybridization, set by the
octahedral crystal field, which allows the t1u orbital to breathe
between the two phases. In the γ phase, the chemical bond has
weaker a1g and stronger t1u channels, due to more extended
t1u orbitals, if compared to the α phase at the same volume.
This weakens the bond strength while it reduces the on-site
Coulomb repulsion, resulting in a stabilization of the γ phase
at larger volumes.

In our approach, the two phases are described by a para-
magnetic Jastrow-correlated Slater determinant (JSD) wave
function sampled by QMC techniques:

�JSD(Rel) = exp[−J (Rel)] det[φi(rj )], (1)

where 1 � i,j � N , Rel = {r1 . . . ,rN } is the many-body N -
electron configuration, and the determinant is factorized in
two spin components ↑ and ↓, since the molecular orbitals
φi have a definite spin projection along z. Both J and φ are
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FIG. 1. (Color online) Panels (a) and (b): Equation of states of the
α and γ phases obtained by VMC and LRDMC calculations, respec-
tively. The black dashed straight line is the Maxwell construction with
the corresponding calculated α-γ transition pressure. (c) Clapeyron
diagram obtained at 0 K in quantum Monte Carlo, compared to the
experimental phase diagram by Decremps et al. [13] at finite T .
Remarkably, the upper and lower critical volumes are within the
experimental range of the coexistence region.

analytic functions with parameters that minimize the energy
of the scalar-relativistic first-principles Hamiltonian (see [16]
for details). The full Coulomb electron-ion interaction is
replaced by a scalar-relativistic Hartree-Fock energy consistent
pseudopotential [17] with 5s25p66s25d14f 1 atomic reference
configuration, which includes semicore states.

The Jastrow factor takes into account strong local correla-
tions as well as intersite correlations, and thoroughly modifies
the DFT generated Slater determinant. We fully optimized the
JSD wave function in a 32-atom cubic supercell with periodic
boundary conditions, which yields structural parameters close
to the thermodynamic limit (see the Supplemental Material
in [16]). By determining the variational energy as a function of
the unit-cell volume, we evaluated the equation of states at the
variational Monte Carlo level (VMC), as reported in Fig. 1(a).
The fcc equilibrium volume per atom Veq of the α phase turns
out to be 27.4 Å3, in an agreement with the experimental value
(28.82 Å3) [18] greatly better than local-density approximation
(LDA) or generalized gradient approximation (GGA) DFT
calculations. To further improve the electronic structure, we
used the lattice regularized diffusion Monte Carlo (LRDMC)
method [19,20]. In the LRDMC, the starting point is our best
VMC wave function given by (1), that is projected to the
ground state with the approximation of the fixed nodes, pinned
to the ones of the VMC wave function to cope with the sign
problem arising in the imaginary time projection. The LRDMC
equation of states plotted in Fig. 1(b) yields an equilibrium
volume of 28.4 Å3, in very good agreement with experiment,
while the bulk modulus B is overestimated (see Table I).

By starting from the optimal JSD wave function for the
α phase, we performed VMC energy minimizations at much
larger volumes (>40 Å), where we stabilized a second param-
agnetic solution, lower in energy than the α phase. This second
solution holds out even at smaller volumes, although at higher
energies. Our computer simulations then reproduced what is

TABLE I. Structural and phase-transition parameters for α and γ

phases obtained by VMC and LRDMC, compared with the experi-
ment. The α-γ phase transition parameters are taken from Ref. [13] at
T = 334 K. A further detailed comparison with alternative ab initio
methods is reported in the Supplemental Material [16].

VMC (T = 0 K) LRDMC (T = 0 K) Expt.

V α
eq (Å3) 27.4 ± 0.1 28.4 ± 0.2 28.52 [18]

V γ
eq (Å3) 30.8 ± 0.2 32.3 ± 0.3 34.35 [21]

Bα (GPa) 48 ± 1 50 ± 3 35 [22]
Bγ (GPa) 38 ± 1 45 ± 3 21–24 [23,24]
Vmin (Å3) 28.0 ± 0.2 28.5 ± 0.3 28.2 [13]
Vmax (Å3) 31.3 ± 0.3 32.7 ± 0.4 32.8 [13]
δV (%) 11.7 ± 0.6 13.8 ± 1.1 15.1 [13]
pt (GPa) − 0.63 ± 0.29 − 0.45 ± 0.53 0.7 [13]
�U (meV) 13 ± 1 12 ± 3 25 [13]

seen in experiment, with a clear hysteresis between the two
states as a function of volume [see Fig. 1(c)]. Further analysis,
based on the Maxwell common tangent construction and on
the geometry parameters, confirmed that this solution is fully
compatible with the sought γ phase. Its LRDMC equilibrium
volume is 32.3 Å3 (Table I), representing a volume collapse
of about 13%; its bulk modulus is softened with respect to
the α phase (as seen in experiments); the (negative) transition
pressure pt is compatible with the extrapolated transition line
to the negative side of the experimental p-T diagram; and
the lower Vmin and upper Vmax critical volumes are within
the experimental range of phase coexistence [Fig. 1(c) and
Table I].

Once the macroscopic parameters are determined, our
theoretical approach is qualified to provide the micro-
scopic physical origin of the volume collapse transition.
By QMC methods it is actually possible to directly ac-
cess spin and charge fluctuations, through the measure of
the spin-spin and charge-charge correlation functions. Here,
we define the charge and spin operators on a cerium
site as n̂i = ∫

V (Ri )
dr[ψ†

↑(r)ψ↑(r) + ψ
†
↓(r)ψ↓(r)] and σ̂i =

1/2
∫
V (Ri )

dr[ψ†
↑(r)ψ↑(r) − ψ

†
↓(r)ψ↓(r)], where the fermionic

field ψ†
σ (r) [ψσ (r)] creates (annihilates) an electron of spin

σ at the position r, and the integral is done over a sphere
of radius R = 2.5 a.u. around the nucleus Ri . At the volume
V = 31.73 Å3, which falls into the experimental coexistence
region, this integration radius gives 〈n̂i〉 ≈ 9 electrons per site
in both phases, mainly coming from the 5s25p6 semicore and
the 4f states, which are the most localized among the valence
electrons described by our pseudopotential. The on-site charge
fluctuations 〈n̂i n̂i〉 − 〈n̂i〉〈n̂i〉 computed by VMC are 1.32(2)
and 1.35(1) for the γ and α phase, respectively. Thus, there is
no sizable difference between the two phases. LRDMC does
not change this picture. Moreover, the Jastrow parameters
which control the charge-charge correlations do not change
significantly between the two phases, in accordance with
the charge-charge correlation function results. Therefore, no
suppression of double occupancies occurs in the γ phase,
signaling that the Mott scenario of the α-γ transition should
be definitely discarded. This is an important conclusion,
considering that the Mott transition has been proposed as
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a valid interpretation of the volume collapse until very
recently [2,11,25].

In the spin sector 〈σ̂i〉 = 0, because the α and γ wave
functions do not break the spin symmetry, as both states
are paramagnetic by construction. From the experimental
point of view, the cerium fcc lattice undergoes the volume
collapse between two paramagnetic states at finite temperature.
However, the α and γ phases feature a very different magnetic
susceptibility, the former being Pauli like, the latter of Curie-
Weiss type. Early calculations based on the Kondo model [3]
and later LDA + DMFT studies [5–8] explained this difference
in terms of Kondo local moment formations in the γ phase,
while the effective Kondo temperature of the DMFT impurity
problem is much larger in the α phase, leaving it in the fully
screened singlet state. Thus, the spin response characterizes
the two paramagnetic phases at finite temperature. At 0 K
the on-site spin-spin correlation functions 〈σ̂i σ̂i〉 − 〈σ̂i〉〈σ̂i〉
computed by VMC yield 0.5614(3) and 0.5861(4) for the γ

and α phase, respectively. Moreover, the spin-spin correlations
have a very short range. As in the charge sector, there is no
significant difference between the two phases. This result can
be understood in terms of Kondo physics. T = 0 K is lower
than any finite Kondo temperature, so that both phases are in
the fully screened regime [26].

The most striking difference between the α and γ solutions
is in the electron density 〈ρ̂(x,y,z)〉, computed always at the
same volume V = 31.73 Å3. The xy contour plot of ρα − ργ is
presented in Fig. 2(a) for z = 0, i.e., at the plane containing the
central atom and four nearest neighbors. This shows positive
(red) and negative (blue) lobes of atomic character. The Jastrow
factor cannot explain this difference on its own, as we have seen
that its variation between the two phases is weak. Instead, the
difference should come from the Slater determinant |�SD〉 =
det[φ], once it is combined and optimized together with the
Jastrow factor in (1). This is indeed confirmed by ρSD

α − ρSD
γ ,

where ρSD = 〈�SD|ρ̂|�SD〉 with J dropped (set to 0) and
�SD frozen, plotted in Fig. 2(b). The charge density difference
carried by the Slater determinant shows a similar pattern than
the full many-body JSD density. This is a strong signature
that the main difference between the α and γ phases at 0 K
comes from a static rearrangement of the electronic structure,
driven by the dynamic electron correlation, which—in our
approach—is coded in the Jastrow factor. It is worth pointing
out here that both phases share almost the same radial charge
density (up to a 0.5% difference) around the nuclei. The
main variation is in its angular distribution, suggesting that
the transition must be understood in terms of an electron
rearrangement at the atomic level, which will consequently
affect the chemical bond in the solid.

In order to analyze this hypothesis, we consider the
density matrix Dproj(r,r′) = ∑

i ψ
proj
i (r)ψi(r′) left projected

over a single cerium atom. This is obtained by expanding
the molecular orbitals ψi(r) on an atomic basis set and
considering in ψ

proj
i (r) only the components referring to

the chosen atom. We then determine the “best” atomic
orbitals φANO

i (r) representing the projected density matrix by
∑k

i=1 φANO
i (r)ψR

i (r′) in an optimally reduced space, namely in
terms of only k � N atomic natural orbitals (ANOs) centered
on the reference atom and corresponding auxiliary molecular

FIG. 2. (Color online) xy contour plot at z = 0 (plane containing
the central atom). (a) JSD-VMC density difference ρα − ργ ; (b)
ρSD

α − ρSD
γ density difference coming from the determinantal part

only of the JSD-VMC wave function. Panels (c) and (d) δρSD
i =∑

j {ρSD
α − ρSD

γ }ij , with {ρSD}ij = 〈Pi�
SD|ρ̂|Pj�

SD〉 the projected
electron density, where i = {s + d,p + f (t1u) + f (t2u)} are the
atomic orbital symmetries for the (c) and (d) panels, respectively. The
density values are expressed in Å−3. The JSD-VMC density values
are twice smaller than the color-coded scale printed in the key. The
unit-cell volume is 31.73 Å3. The locations of Ce atoms are indicated
by gray dots. The nearest neighbors on the plane of the central atom
are at the square corners.

orbitals ψR
i (r′) spanning all the cell. This can be achieved by

a standard Schmidt decomposition, through a minimization
of the Euclidean distance between the truncated and the
projected density matrix. The resulting eigenvalues λ2

i are such
that |Dproj|2 ≈ ∑k

i=1 λ2
i , and they are related to the ANOs

occupation and their chemical reactivity (see Supplemental
Material in [16]).

Any local atomic variation due to a change in the chemical
bond or crystal field is detected by this approach, as it takes into
account the embedding of the atom in its environment. In Fig. 3
we plot the ANOs λ2

i eigenvalues and their spread, for the same
volume as in Fig. 2. The first six ANOs would be perfectly oc-
cupied in the case of noninteracting closed-shell pseudoatoms.
In particular, the first four are the semicore states.

Two striking features are apparent. First, between the α

and γ ANOs, there is the variation of the seventh atomic
orbital weight. In the α phase the seventh ANO, of a1g

symmetry, has almost the same weight as the fifth and sixth
ANOs, of eg symmetry arising from 5d3z2−r2 and 5dx2−y2

orbitals, degenerate in the octahedral crystal field. As the
isolated atomic ground state is in the 1G singlet 6s25d14f 1

configuration (with the s shell full and inert), it is clear that
the s-to-d atomic promotion is crucial to explain the chemical
bond in the α phase, with the two eg (5d) and the a1g (6s)
orbitals cooperating to set its strength. The cooperative action
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FIG. 3. (Color online) Left panel: First 17 ANO eigenvalues of
the density matrix Schmidt decomposition for the α and γ phases at
V = 31.73 Å3. Their symmetry is reported in the x axis. The vertical
red line represents the filling (6) of a noninteracting closed-shell
pseudoatom in the octahedral field. The variation between the two
phases is remarkable for the a1g (atomic 6s) seventh eigenvalue,
which is more resonating with the ones below in the α phase.
Right panel: natural orbital localization measured by the spread
� = 〈�|r2|�〉 − |〈�|r|�〉|2. Note that the largest difference comes
from the t1u orbitals.

of s and d orbitals has been highlighted also in the formation
of the Ce dimer [27,28].

On the other hand, in the γ phase, the a1g (6s) ANO weight
is almost an order of magnitude smaller. It means that the s

character of the outer-shell region is weaker in γ than in α, as
shown also by the density variation ρSD

α − ρSD
γ projected onto

the s-atomic orbitals, plotted in Fig. 2(c).
In both α and γ phases, above the seventh a1g ANO, there

is a series of orbitals with small eigenvalues but competing
each other in magnitude. The remaining atomic f electron
shares a mixed character, with non-negligible a2u, t2u, and t1u

occupations.
The second important difference between α and γ is the

localization of the three degenerate t1u orbitals. The octahedral
crystal field makes the t1u orbitals strongly hybridized between

the p and f atomic symmetries. It turns out that the spread of
the t1u is twice larger in the γ phase, as reported in Fig. 3(b).
This is consistent with Fig. 2(d), where the p + f (t1u)
projected density is spread over a wider range in the γ phase.
The larger t1u extension reduces the strong local Coulomb
repulsion and increases the overlap with its neighbors and thus
its bonding character.

To summarize, the sizable difference between the α and
γ chemical bond character results from a reduction of the
a1g weight together with an increase of the t1u overlap.
The breathing of the t1u orbitals takes place through the
hybridization between the p and f states, coupled by the
octahedral crystal field. The chemical bond in the γ phase
is weaker (and so the equilibrium volume is larger) as the
t1u-based bond is less strong than the s-a1g one. On the other
hand, the system gains energy by reducing the on-site Coulomb
repulsion through more extended t1u orbitals.

In conclusion, the volume collapse transition can be
understood at 0 K as a conventional first-order transition
of electronic origin. The two phases are well described by
the zero-T equation of state, while their relative stability
is provided by tiny entropic effects [13]. The underlying
mechanism of the volume collapse should survive by the
addition of the spin-orbit coupling [29], not present in our
calculations, as in cerium it is much weaker than the local
Coulomb repulsion, although competing with the crystal-field
splitting [30]. Our picture disproves the validity of the Mott
model, and puts cerium in a quantum phase transition regime.
Our detailed predictions on the interplay between valence
and localized orbitals can be experimentally tested by x-ray
electron spectroscopy at L edges, to probe the s and p states.
The electronic phase transition mechanism detailed in this
work can be applied to cerium alloys, and more generally to a
wider class of f -electron systems.
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